Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary alcohols acetic anhydride

The primary and secondary alcohol functionahties have different reactivities, as exemplified by the slower reaction rate for secondary hydroxyls in the formation of esters from acids and alcohols (8). 1,2-Propylene glycol undergoes most of the typical alcohol reactions, such as reaction with a free acid, acyl hahde, or acid anhydride to form an ester reaction with alkaU metal hydroxide to form metal salts and reaction with aldehydes or ketones to form acetals and ketals (9,10). The most important commercial appHcation of propylene glycol is in the manufacture of polyesters by reaction with a dibasic or polybasic acid. [Pg.366]

By a suitable choice of activating reagents, primary and secondary alcohols can be selectively oxidi2ed to carbonyl compounds in good yields at room temperatures. Typical activating reagents are acetic anhydride, sulfur trioxide—pyridine, dicyclohexyl carbodiimide, and phosphoms pentoxide (40). [Pg.108]

Bismuth(III) triflate is also a powerful acylation catalyst that catalyzes reactions with acetic anhydride and other less reactive anhydrides such as benzoic and pivalic anhydrides.113 Good results are achieved with tertiary and hindered secondary alcohols, as well as with alcohols containing acid- and base-sensitive functional groups. [Pg.246]

This also explains the use of pyridine in acetic anhydride as an acetylating reagent6 in the determination of primary or secondary alcohols and amines according to the following sequential reactions (with ROH as an example) ... [Pg.253]

Glacial acetic acid, pure or mixed with other solvents, is one of the most attractive solvents for the titration of amines. Commercial acetic acid containing not more than 1% of water (Karl Fischer titration check) can be used in normal practice for the highest accuracy, however, the water content must be lowered to about 0.01% by addition of acetic anhydride and standing for 24 h not more than the stoichiometric amount of acetic anhydride should be used in order to avoid possible reactions with active hydrogen-containing analyte components such as primary or secondary amines or alcohols. A similar procedure is followed in the preparation of perchloric acid titrant from the commercial... [Pg.296]

Substitution as a preceding reaction. In addition to the well known determination of primary and secondary alcohols via esterification with acetic anhydride in pyridine at about 98° C, esterification is possible at room temperature in ethyl acetate with perchloric acid117 or 2,4-dinitrobenzenesulphonic acid118 as a catalyst. However, as tertiary alcohols preferably split off their hydroxy group, they can be adequately determined by OH-substitution with HBr in glacial acetic acid according to... [Pg.303]

Iridium-catalyzed transfer hydrogenation of aldehyde 73 in the presence of 1,1-dimethylallene promotes tert-prenylation [64] to form the secondary neopentyl alcohol 74. In this process, isopropanol serves as the hydrogen donor, and the isolated iridium complex prepared from [Ir(cod)Cl]2, allyl acetate, m-nitrobenzoic acid, and (S)-SEGPHOS is used as catalyst. Complete levels of catalyst-directed diastereoselectivity are observed. Exposure of neopentyl alcohol 74 to acetic anhydride followed by ozonolysis provides p-acetoxy aldehyde 75. Reductive coupling of aldehyde 75 with allyl acetate under transfer hydrogenation conditions results in the formation of homoallylic alcohol 76. As the stereochemistry of this addition is irrelevant, an achiral iridium complex derived from [Ir(cod)Cl]2, allyl acetate, m-nitrobenzoic acid, and BIPHEP was employed as catalyst (Scheme 5.9). [Pg.120]

Racemic argemonine (5) has been synthesized from the readily available tetrahydro-6,12-methanodibenz[c,/Iazocine (74) (120-122) through a sequence involving a Stevens rearrangement and in an overall yield of 53% from 74 (Scheme 11) (123). Hofmann degradation of 74 furnished the cxo-methylene compound 75 (120,122). An oxidative ring expansion of 75 afforded ketone 76, which was then reduced to secondary alcohol 77. A transannular reaction, effected by acetic acid-acetic anhydride, resulted in the formation of the tetra-... [Pg.342]

The cyclohexene 121, which was readily accessible from the Diels-Alder reaction of methyl hexa-3,5-dienoate and 3,4-methylenedioxy-(3-nitrostyrene (108), served as the starting point for another formal total synthesis of ( )-lycorine (1) (Scheme 11) (113). In the event dissolving metal reduction of 121 with zinc followed by reduction of the intermediate cyclic hydroxamic acid with lithium diethoxyaluminum hydride provided the secondary amine 122. Transformation of 122 to the tetracyclic lactam 123 was achieved by sequential treatment with ethyl chloroformate and Bischler-Napieralski cyclization of the resulting carbamate with phosphorus oxychloride. Since attempts to effect cleanly the direct allylic oxidation of 123 to provide an intermediate suitable for subsequent elaboration to ( )-lycorine (1) were unsuccessful, a stepwise protocol was devised. Namely, addition of phenylselenyl bromide to 123 in acetic acid followed by hydrolysis of the intermediate acetates gave a mixture of two hydroxy se-lenides. Oxidative elimination of phenylselenous acid from the minor product afforded the allylic alcohol 124, whereas the major hydroxy selenide was resistant to oxidation and elimination. When 124 was treated with a small amount of acetic anhydride and sulfuric acid in acetic acid, the main product was the rearranged acetate 67, which had been previously converted to ( )-lycorine (108). [Pg.279]

Jeong, Kim et al. reported use of the chiral DMAP derivative 22e, which was synthesized from 3-amino-DMAP, Kemp s triacid, and N-acetyl-2,2 -diamino-l,l -binaphthyl [26], As summarized in Scheme 12.11, selectivity factors up to 21 were observed with 1 mol% modular catalyst 22e in the kinetic resolution of a variety of secondary alcohols with acetic anhydride in tert-amyl alcohol as solvent, conditions first described by Fu et al. [20]. [Pg.331]

A mixed oxide of ruthenium, copper, iron and alumnium has been developed as a catalyst for the synthesis of aldehydes and ketones from alcohols.258 Oxidation of chiral secondary 1,2-diols with 2,3-dichloro-5,6-dicyano-l,4-benzoquinone under ultrasound wave promotion leads to the selective oxidation of benzylic or allylic hydroxyl group. The configuration of the adjacent chiral centre is retained.259 The kinetics of oxidation of ethylbenzene in the presence of acetic anhydride have been studied.260... [Pg.115]

Notable progress in the structural analysis of methylene derivatives of the polyhydric alcohols resulted from the investigations of Hann, Hudson and their co-workers26 80,40-4 into the behavior of these compounds during acetolysis. It was found that a mixture of acetic anhydride, acetic acid and 1-2% sulfuric acid ruptures preferentially any methylene bridge which spans a primary and a secondary position, giving the acetate ester of the primary hydroxyl and the acetoxymethyl ether of the secondary hydroxyl subsequent treatment with sodium methoxide removes each of these substituents. Under similar conditions, the acetolysis of a benzylidene compound results in the replacement of the arylidene residue, wherever it is located in the molecule, by two acetyl groups.16 29 47 48... [Pg.144]

Oxidation of alcohols. The reactivity of PDC is increased by acetic anhydride. Primary and secondary alcohols are oxidized efficiently with 0.6-0.7 equiv of PDC and 3 equiv. of Ac.O in CfLCl, at 40°. Addition of DMF in the oxidation of primary alcohols retards further oxidation to the carboxylic acid. Acid-sensitive groups are stable to the conditions. [Pg.419]

Oxidation of alcohols.1 The reactivity of PDC is increased by acetic anhydride. Primary and secondary alcohols are oxidized efficiently with 0.6-0.7 equiv. of PDC and... [Pg.419]


See other pages where Secondary alcohols acetic anhydride is mentioned: [Pg.282]    [Pg.126]    [Pg.76]    [Pg.224]    [Pg.229]    [Pg.551]    [Pg.50]    [Pg.59]    [Pg.229]    [Pg.351]    [Pg.261]    [Pg.253]    [Pg.265]    [Pg.22]    [Pg.919]    [Pg.126]    [Pg.6]    [Pg.624]    [Pg.982]    [Pg.425]    [Pg.277]    [Pg.299]    [Pg.344]    [Pg.104]    [Pg.179]    [Pg.266]    [Pg.374]    [Pg.339]    [Pg.185]    [Pg.41]    [Pg.440]    [Pg.425]    [Pg.175]    [Pg.178]    [Pg.329]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Acetals alcohols

Alcohols acetates

Alcohols secondary alcohol

Secondary acetic anhydride

© 2024 chempedia.info