Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anhydrides. reactivity

TABLE 3 Acid Versus Anhydride Reactivity with Matrix ... [Pg.154]

Comparison with in vivo procedures Although the FDNB procedure proved to be a suitable reference method, there is no doubt that all methods should be ultimately compared to in vivo procedures. For this reason selected samples were also analyzed by plasma amino acid and digestibility methods. Preliminary results ( Table II ) show that plasma lysine results correlated very well with results for lysine digestibility and FDNB lysine ( r =0.95 ), reasonably well with those for dansyl chloride lysine, succinic anhydride reactive lysine and dye binding lysine, but poorly with total lysine. Although the absolute values were in many cases very different, it is apparent that all methods except total lysine can be used to at least indicate the extent of lysine damage. [Pg.425]

Isoquinudidine derivs. 2-azabicyclo[12.2]-octane derivs. retro-synthesis, 212-213 synthesis, 153, 291, 297 Isothioureas, 5-alkyl- thiols from, 168 Isoureas, O-acyl- = carbamimidic anhydrides reactive intermediates, 144-145, 234 —, O-alkyl- carbamimidic esters, 144-145 Isoxazoles, 307—308 —, 4,5-dihydro-, 153 Isoxazolidines, 153... [Pg.212]

Chlorendic Anhydride, Anhydride reactive flame retardant, Velsicol Chemical Corp. Chlorez, Resin chloroparaffins, Dover Chemical Corp., Subs. ICC Industries, Inc. [Pg.897]

A second family is based on isobutene polymers (PIB) having molecular weights from 600 to 2000 that are equally important raw materials for detergent additives. So as to render them reactive with the hydrophilic part, they can be chlorinated or condensed with the maleic anhydride. A third way is based on the utilization of polypropylphenols of molecular weights between 600 and 3000. [Pg.347]

The choice of type of derivative should be based on whether the chloride or anhydride is aliphatic or aromatic, because this factoi largely determines the reactivity. Aliphatic acid chlorides are best converted into their anilides, as in 4 above aromatic acid chloride may be similarly converted into their anilides, or they may be converted into their amides by shaking with an excess of ammonia (p, 120). (M.ps., pp. 544-545.) Aliphatic acid anhydrides should be converted into their crystalline anilides, but aromatic acid anhydrides arc best hydrolysed to the acid, which can then be converted into one of the standard derivatives (p. 349). [Pg.366]

Here the phenylacetic anhydride, possessing more reactive a-hydrogen atoms, condenses with benzaldehyde to give a-phenylcinnamic acid. The preparation of the latter is an example of the Oglialoro modiflcation of the Perkin reaction. [Pg.708]

For this reason, acetic anhydride is generally preferred for the preparation of acetyl derivatives, but acetyl chloride, in view of its greater reactivity, is a better diagnostic reagent for primary and secondary amines. [Pg.1072]

Acid derivatives are made directly from acids or by conversion from other acid derivatives depending on their stabihty. The most important are esters (RCOiEt), amides (RCO2NR2), anhydrides (RCOO COR) and add clilorides (RCOCI). Arrange these in an order of stabilily, the most reactive at the top of the list, the most stable at the bottom. [Pg.21]

These systems nitrate aromatie eompounds by a proeess of electro-philie substitution, the eharacter of whieh is now understood in some detail ( 6.1). It should be noted, however, that some of them ean eause nitration and various other reactions by less well understood processes. Among sueh nitrations that of nitration via nitrosation is especially important when the aromatic substrate is a reactive one ( 4.3). In reaetion with lithium nitrate in aeetie anhydride, or with fuming nitrie aeid, quinoline gives a small yield of 3-nitroquinoline this untypieal orientation (ef. 10.4.2 ) may be a eonsequenee of nitration following nucleophilic addition. ... [Pg.2]

An observation which is relevant to the nitration of very reactive compounds in these media ( 5.3.3) is that mixtures of nitric acid and acetic anhydride develop nitrous acid on standing. In a solution ([HNO3] = 0-7 mol 1 ) at 25 °C the concentration of nitrous acid is... [Pg.81]

Characteristics of the system as nitrating reagents Wibaut, who introduced the competitive method for determining reactivities (his experiments with toluene, benzene and chlorobenzene were performed under heterogeneous conditions and were not successful), pointed out that solutions of nitric acid in acetic anhydride are useful in making comparisons of reactivities because aromatic compounds are soluble in them. ... [Pg.82]

Ingold and his co-workers used the competitive method in their experiments, in which nitration was brought about in acetic anhydride. Typically, the reaction solutions in these experiments contained o-8-I 4 mol of nitric acid, and the reaction time, depending on the reactivities of the compounds and the temperature, was 0-5-10 h. Results were obtained for the reactivities of toluene, > ethyl benzoate, the halogenobenzenes, ethyl phenyl acetate and benzyl chloride. Some of these and some later results are summarized in table 5.2. Results for the halogenobenzenes and nitrobiphenyls are discussed later ( 9.1.4, lo.i), and those for a series of benzylic compounds in 5,3.4. [Pg.82]

The observation of nitration at a rate independent of the concentration and nature of the aromatic excludes AcONOa as the reactive species. The fact that zeroth-order rates in these solutions are so much faster than in solutions of nitric acid in inert organic solvents, and the fact that HNO3 and H2NO3+ are ineffective in nitration even when they are present in fairly lai e concentrations, excludes the operation of either of these species in solutions of acetyl nitrate in acetic anhydride. [Pg.103]

If acetoxylation were a conventional electrophilic substitution it is hard to understand why it is not more generally observed in nitration in acetic anhydride. The acetoxylating species is supposed to be very much more selective than the nitrating species, and therefore compared with the situation in (say) toluene in which the ratio of acetoxylation to nitration is small, the introduction of activating substituents into the aromatic nucleus should lead to an increase in the importance of acetoxylation relative to nitration. This is, in fact, observed in the limited range of the alkylbenzenes, although the apparently severe steric requirement of the acetoxylation species is a complicating feature. The failure to observe acetoxylation in the reactions of compounds more reactive than 2-xylene has been attributed to the incursion of another mechan-104... [Pg.104]

If this electrostatic treatment of the substituent effect of poles is sound, the effect of a pole upon the Gibbs function of activation at a particular position should be inversely proportional to the effective dielectric constant, and the longer the methylene chain the more closely should the effective dielectric constant approach the dielectric constant of the medium. Surprisingly, competitive nitrations of phenpropyl trimethyl ammonium perchlorate and benzene in acetic anhydride and tri-fluoroacetic acid showed the relative rate not to decrease markedly with the dielectric constant of the solvent. It was suggested that the expected decrease in reactivity of the cation was obscured by the faster nitration of ion pairs. [Pg.173]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

We shall describe a specific synthetic example for each protective group given above. Regiosdective proteaion is generally only possible if there are hydroxyl groups of different sterical hindrance (prim < sec < tert equatorial < axial). Acetylation has usually been effected with acetic anhydride. The acetylation of less reactive hydroxyl groups is catalyzed by DMAP (see p.l44f.). Acetates are stable toward oxidation with chromium trioxide in pyridine and have been used, for example, for protection of steroids (H.J.E. Loewenthal, 1959), carbohydrates (M.L. Wolfrom, 1963 J.M. Williams, 1967), and nucleosides (A.M. Micbelson, 1963). The most common deacetylation procedures are ammonolysis with NH in CH OH and methanolysis with KjCO, or sodium methoxide. [Pg.158]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

As an application of this nucleophilic reactivity, 2-aminothiazole was used to partially convert into amide the polymer obtained from acrylic acid, benzene, and acetic anhydride (271). An aqueous medium is reported to favor the reaction between acetic anhydride and 2-aminothiazole (272). [Pg.52]

The exocyclic nitrogen is reactive even when already substituted 2-anilinothiazole (110) is acetylated by acetic anhydride (120). other examples of this reactivity are given in the tables (Section VII). [Pg.53]

Acetylation of 2-phenyl-4-amino-5-benzoylthiazole takes place on the exocyclic nitrogen (49). This exocyclic nitrogen remains the reactive center even with 2-imino-3-aryl-4-amino-5-carboxamido-4-thiazoline (111). Its acetylation with acetic anhydride gives the 4-acetamido derivative (112), which reacts further on heating to yield 2-(acetylimino)-(3H)-3-aryl-5-methylthiazolo[4,5-d]pvrimidin-7-(6H)-one (113) (Scheme 76) (276). [Pg.53]

Imino-4-thiazolines are far more basic than their isomeric 2-aminothiazoles (see Table VI-1). They react with most electrophDic centers through the exocyclic nitrogen and are easily acylated (37, 477, 706) and sulfonated (652). The reaction of 2-imino-3-methyi-4-thiazoline (378) with a-chloracetic anhydride yields 379 (Scheme 217) (707). This exclusive reactivity of the exocyclic nitrogen precludes the direct synthesis of endocyclic quaternary salts of 2-imino-4-thiazolines. although this class of compounds was prepared recently according to Scheme 218 (493). [Pg.124]

The nucleophilic reactivity of the oxygen has been observed in acetylation by acetic anhydride of 2-aryl- and 2-heteroaryl-A-2-thiazoline-4-ones (181) (388, 397, 410, 414, 416, 419, 422, 426. 427) and methylation of 5-(4 -chlorophenyl)-A-2-thiazoline-4-one (416) (Scheme 94). [Pg.423]


See other pages where Anhydrides. reactivity is mentioned: [Pg.205]    [Pg.40]    [Pg.191]    [Pg.124]    [Pg.286]    [Pg.386]    [Pg.162]    [Pg.869]    [Pg.485]    [Pg.486]    [Pg.205]    [Pg.40]    [Pg.191]    [Pg.124]    [Pg.286]    [Pg.386]    [Pg.162]    [Pg.869]    [Pg.485]    [Pg.486]    [Pg.71]    [Pg.178]    [Pg.1]    [Pg.101]    [Pg.135]    [Pg.214]    [Pg.224]    [Pg.242]    [Pg.428]    [Pg.92]    [Pg.125]   
See also in sourсe #XX -- [ Pg.250 ]




SEARCH



Acid anhydrides reactivity

Anhydride, hydrolytic reactivity

Anhydrides, reactive

Anhydrides, reactive

Maleic anhydride copolymerization reactivity ratios

Phosphonium anhydrides, reactivity

Reactive halides and anhydrides

Styrene-methacrylic anhydride reactivity ratios

© 2024 chempedia.info