Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrodinger equation development

Because spatially localized functions are the natural choice for isolated molecules, the quantum chemistry methods developed within the chemistry community are dominated by methods based on these functions. Conversely, because physicists have historically been more interested in bulk materials than in individual molecules, numerical methods for solving the Schrodinger equation developed in the physics community are dominated by spatially periodic functions. You should not view one of these approaches as right and the other as wrong as they both have advantages and disadvantages. [Pg.18]

This establishes our assertion that the former roots are overwhelmingly more numerous than those of the latter kind. Before embarking on a formal proof, let us illustrate the theorem with respect to a representative, though specific example. We consider the time development of a doublet subject to a Schrodinger equation whose Hamiltonian in a doublet representation is [13,29]... [Pg.118]

In making certain mathematical approximations to the Schrodinger equation, we can equate derived terms directly to experiment and replace dilTiciilL-to-calculate mathematical expressions with experimental values. In other situation s, we introduce a parameter for a mathematical expression and derive values for that parameter by fitting the results of globally calculated results to experiment. Quantum chemistry has developed two groups of researchers ... [Pg.217]

The simplest approximation to the Schrodinger equation is an independent-electron approximation, such as the Hiickel method for Jt-electron systems, developed by E. Hiickel. Later, others, principally Roald Hoffmann of Cornell University, extended the Hiickel approximations to arbitrary systems having both n and a electrons—the Extended Hiickel Theory (EHT) approximation. This chapter describes some of the basics of molecular orbital theory with a view to later explaining the specifics of HyperChem EHT calculations. [Pg.219]

It is not the intention that this book should be a primary reference on quantum mechanics such references are given in the bibliography at the end of this chapter. Nevertheless, it is necessary at this stage to take a brief tour through the development of the Schrodinger equation and some of its solutions that are vital to the interpretation of atomic and molecular spectra. [Pg.8]

In 1925, before the development of the Schrodinger equation, Franck put forward qualitative arguments to explain the various types of intensity distributions found in vibronic transitions. His conclusions were based on an appreciation of the fact that an electronic transition in a molecule takes place much more rapidly than a vibrational transition so that, in a vibronic transition, the nuclei have very nearly the same position and velocity before and after the transition. [Pg.246]

States in the form of functions develop in time according to the Schrodinger equation... [Pg.410]

The first two chapters serve as an introduction to quantum theory. It is assumed that the student has already been exposed to elementary quantum mechanics and to the historical events that led to its development in an undergraduate physical chemistry course or in a course on atomic physics. Accordingly, the historical development of quantum theory is not covered. To serve as a rationale for the postulates of quantum theory, Chapter 1 discusses wave motion and wave packets and then relates particle motion to wave motion. In Chapter 2 the time-dependent and time-independent Schrodinger equations are introduced along with a discussion of wave functions for particles in a potential field. Some instructors may wish to omit the first or both of these chapters or to present abbreviated versions. [Pg.361]

Erwin Schrodinger (1887-1961 Nobel Prize for physics 1932) transferred the concept of wave-particle duality of matter developed by L. V. de Broglie for electrons to the whole atom and thus developed wave mechanics. The Schrodinger equation allows a description of orbitals as the probability of the location of the electrons. Wave mechanics represented a significant development, but were subsequently shown to be insufficient. [Pg.26]

Most semi-empirical models are based on the fundamental equations of Hartree-Fock theory. In the following section, we develop these equations for a molecular system composed of A nuclei and N electrons in the stationary state. Assuming that the atomic nuclei are fixed in space (the Born-Oppenheimer approximation), the electronic wavefunction obeys the time-independent Schrodinger equation ... [Pg.12]

Most of the AIMD simulations described in the literature have assumed that Newtonian dynamics was sufficient for the nuclei. While this is often justified, there are important cases where the quantum mechanical nature of the nuclei is crucial for even a qualitative understanding. For example, tunneling is intrinsically quantum mechanical and can be important in chemistry involving proton transfer. A second area where nuclei must be described quantum mechanically is when the BOA breaks down, as is always the case when multiple coupled electronic states participate in chemistry. In particular, photochemical processes are often dominated by conical intersections [14,15], where two electronic states are exactly degenerate and the BOA fails. In this chapter, we discuss our recent development of the ab initio multiple spawning (AIMS) method which solves the elecronic and nuclear Schrodinger equations simultaneously this makes AIMD approaches applicable for problems where quantum mechanical effects of both electrons and nuclei are important. We present an overview of what has been achieved, and make a special effort to point out areas where further improvements can be made. Theoretical aspects of the AIMS method are... [Pg.440]

The development of an ab initio quantum molecular dynamics method is guided by the need to overcome two main obstacles. First, one needs to develop an efficient, yet accurate, method for solving the electronic Schrodinger equation for both ground and excited electronic states. Second, the quantum mechanical character of the nuclear dynamics must be addressed. (This is necessary for the description of photochemical and tunneling processes.) This section provides a detailed discussion of the approaches we have taken to solve these two problems. [Pg.441]

Important insights have been developed using approximate methods that were not highly precise quantitatively, and excellent high-level methods for solving the Schrodinger equation have been developed, but the methods still have used approximations. A Nobel Prize in 1998 went to John Pople and Walter Kohn for their different successful approaches to this problem. Earlier methods used many... [Pg.81]

In his classical paper, Renner [7] first explained the physical background of the vibronic coupling in triatomic molecules. He concluded that the splitting of the bending potential curves at small distortions of linearity has to depend on p2A, being thus mostly pronounced in n electronic state. Renner developed the system of two coupled Schrodinger equations and solved it for n states in the harmonic approximation by means of the perturbation theory. [Pg.615]

The term "semi-empirical" has been reserved commonly for electronic-based calculations which also starts with the Schrodinger equation.9-31 Due to the mathematical complexity, which involve the calculation of many integrals, certain families of integrals have been eliminated or approximated. Unlike ab initio methods, the semi-empirical approach adds terms and parameters to fit experimental data (e.g., heats of formation). The level of approximations define the different semi-empirical methods. The original semi-empirical methods can be traced back to the CNDO,12 13 NDDO, and INDO.15 The success of the MINDO,16 MINDO/3,17-21 and MNDO22-27 level of theory ultimately led to the development of AMI28 and a reparameterized variant known as PM3.29 30 In 1993, Dewar et al. introduced SAMI.31 Semi-empirical calculations have provided a wealth of information for practical applications. [Pg.38]

Solutions to the Schrodinger equation Hcj) = E(f> are the molecular wave functions 0, that describe the entangled motion of the three particles such that (j) 4> represents the density of protons and electron as a joint probability without any suggestion of structure. Any other molecular problem, irrespective of complexity can also be developed to this point. No further progress is possible unless electronic and nuclear variables are separated via the adiabatic simplification. In the case of Hj that means clamping the nuclei at a distance R apart to generate a Schrodinger equation for electronic motion only, in atomic units,... [Pg.364]

From these early beginnings, computer studies have developed into sophisticated tools for the understanding of defects in solids. There are two principal methods used in routine investigations atomistic simulation and quantum mechanics. In simulation, the properties of a solid are calculated using theories such as classical electrostatics, which are applied to arrays of atoms. On the other hand, the calculation of the properties of a solid via quantum mechanics essentially involves solving the Schrodinger equation for the electrons in the material. [Pg.67]

Quantum mechanical methods follow a similar path, except that the starting point is the solution of the Schrodinger equation for the system under investigation. The most successful and widely used method is that of Density Functional Theory. Once again, a key point is the development of a realistic model that can serve as the input to the computer investigation. Energy minimization, molecular dynamics, and Monte Carlo methods can all be employed in this process. [Pg.67]

The formal similarity between Eq. (10) and the time-dependent Schrodinger equation is striking, and we shall indeed develop methods which are very reminiscent of quantum mechanics. In particular, we may calculate the eigenfunctions and eigenvalues of the unperturbed Liouville operator L0. We look for solutions of ... [Pg.165]


See other pages where Schrodinger equation development is mentioned: [Pg.231]    [Pg.231]    [Pg.891]    [Pg.220]    [Pg.249]    [Pg.11]    [Pg.140]    [Pg.232]    [Pg.82]    [Pg.131]    [Pg.304]    [Pg.411]    [Pg.49]    [Pg.79]    [Pg.688]    [Pg.23]    [Pg.249]    [Pg.441]    [Pg.445]    [Pg.461]    [Pg.264]    [Pg.324]    [Pg.326]    [Pg.326]    [Pg.221]    [Pg.90]    [Pg.372]    [Pg.2]    [Pg.72]    [Pg.99]    [Pg.521]   
See also in sourсe #XX -- [ Pg.101 , Pg.102 ]




SEARCH



Contracted Schrodinger equation development

Schrodinger equation perturbative development

© 2024 chempedia.info