Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample preparation surface structure

SEM s) they measure surface structures in three dimensions x. y and z. With little or no sample preparation surfaces can be studied down to nanometer or better (molecular or atomic) resolution, in ambient air, vacuum and liquids. Surface processes, like adsorption and electrochemical metal deposition can be followed in situ. [Pg.381]

Raman spectroscopy is a very convenient technique for the identification of crystalline or molecular phases, for obtaining structural information on noncrystalline solids, for identifying molecular species in aqueous solutions, and for characterizing solid—liquid interfaces. Backscattering geometries, especially with microfocus instruments, allow films, coatings, and surfaces to be easily measured. Ambient atmospheres can be used and no special sample preparation is needed. [Pg.440]

The STM uses this eflFect to obtain a measurement of the surface by raster scanning over the sample in a manner similar to AFM while measuring the tunneling current. The probe tip is typically a few tenths of a nanometer from the sample. Individual atoms and atomic-scale surface structure can be measured in a field size that is usually less than 1 pm x 1 pm, but field sizes of 10 pm x 10 pm can also be imaged. STM can provide better resolution than AFM. Conductive samples are required, but insulators can be analyzed if coated with a conductive layer. No other sample preparation is required. [Pg.704]

Recent developments in Raman equipment has led to a considerable increase in sensitivity. This has enabled the monitoring of reactions of organic monolayers on glassy carbon [4.292] and diamond surfaces and analysis of the structure of Lang-muir-Blodgett monolayers without any enhancement effects. Although this unenhanced surface-Raman spectroscopy is expected to be applicable to a variety of technically or scientifically important surfaces and interfaces, it nevertheless requires careful optimization of the apparatus, data treatment, and sample preparation. [Pg.260]

The main problem in Eas0 vs. correlations is that the two experimental quantities are as a rule measured in different laboratories with different techniques. In view of the sensitivity of both parameters to the surface state of the metal, their uncertainties can in principle result of the same order of magnitude as AX between two metals. On the other hand, it is rare that the same laboratory is equipped for measuring both single-crystal face is not followed by a check of its perfection by means of appropriate spectroscopic techniques. In these cases we actually have nominal single-crystal faces. This is probably the reason for the observation of some discrepancies between differently prepared samples with the same nominal surface structure. Fortunately, there have been a few cases in which both Ea=0 and 0 have been measured in the same laboratory these will be examined later. Such measurements have enabled the resolution of controversies that have long persisted because of the basic criticism of Eazm0 vs. 0 plots. [Pg.157]

XPS has typically been regarded primarily as a surface characterization technique. Indeed, angle-resolved XPS studies can be very informative in revealing the surface structure of solids, as demonstrated for the oxidation of Hf(Sio.sAso.5)As. However, with proper sample preparation, the electronic structure of the bulk solid can be obtained. A useful adjunct to XPS is X-ray absorption spectroscopy, which probes the bulk of the solid. If trends in the XPS BEs parallel those in absorption energies, then we can be reasonably confident that they represent the intrinsic properties of the solid. Features in XANES spectra such as pre-edge and absorption edge intensities can also provide qualitative information about the occupation of electronic states. [Pg.139]

Table I illustrates the utility of DRUV-visible data in determining the surface structures involving Ti. Samples of TS-1 were prepared by three different methods or treatments. Samples 1 and 2 were prepared by conventional hydrothermal synthesis and sample 3 by synthesis in a fluoride medium. TS-2 was synthesized as reported (7). At least five bands could be discerned by deconvolution (Fig. 3), at 205, 228, 258, 290, and 330 nm. Band 1 at 205 nm is assigned to tetrahedral, tetrapodal Ti present in TS-1, TS-2, and Ti-beta. Band 5 at 330 nm is assigned to an... Table I illustrates the utility of DRUV-visible data in determining the surface structures involving Ti. Samples of TS-1 were prepared by three different methods or treatments. Samples 1 and 2 were prepared by conventional hydrothermal synthesis and sample 3 by synthesis in a fluoride medium. TS-2 was synthesized as reported (7). At least five bands could be discerned by deconvolution (Fig. 3), at 205, 228, 258, 290, and 330 nm. Band 1 at 205 nm is assigned to tetrahedral, tetrapodal Ti present in TS-1, TS-2, and Ti-beta. Band 5 at 330 nm is assigned to an...
Conventional HRTEM operates at ambient temperature in high vacuum and directly images the local structure of a catalyst at the atomic level, in real space. In HRTEM, as-prepared catalyst powders can be used without additional sample preparation. The method does not normally require special treatment of thin catalyst samples. In HRTEM, very thin samples can be treated as WPOs, whereby the image intensity can be correlated with the projected electrostatic potential of the crystal, leading to the atomic structural information characterizing the sample. Furthermore, the detection of electron-stimulated XRE in the EM permits simultaneous determination of the chemical composition of the catalyst. Both the surface and sub-surface regions of catalysts can be investigated. [Pg.243]

In other cases (sometimes for other areas of the same sample preparation) the particles are heavily twinned and show little correlation with the substrate orientation. It remains to be seen whether these differences may be associated with particular conditions, structures or chemical composition of the substrate surface. [Pg.352]

In this part, we prepared and studied the Ag/Si02 catalyst by one-step and two-step sol-gel methods. The results show that the Ag/Si02 catalyst prepared here is one kind of bulk material which has a high surface area. The Ag/Si02 catalyst is made up with functional component of Ag or silver oxide in 20 to 30 nm and carrier Si02. Moreover, we found that the different preparation methods have great effect on crystal structure of the samples. The structure of the sample prepared by the one-step method is always a single crystal structure. And the structure of the sample prepared by the two-step method is always a mixed crystal structure. [Pg.81]


See other pages where Sample preparation surface structure is mentioned: [Pg.124]    [Pg.329]    [Pg.340]    [Pg.79]    [Pg.1635]    [Pg.315]    [Pg.46]    [Pg.21]    [Pg.91]    [Pg.246]    [Pg.207]    [Pg.207]    [Pg.96]    [Pg.96]    [Pg.267]    [Pg.242]    [Pg.19]    [Pg.18]    [Pg.794]    [Pg.115]    [Pg.45]    [Pg.11]    [Pg.66]    [Pg.150]    [Pg.209]    [Pg.214]    [Pg.212]    [Pg.247]    [Pg.317]    [Pg.222]    [Pg.549]    [Pg.141]    [Pg.270]    [Pg.28]    [Pg.20]    [Pg.171]    [Pg.279]    [Pg.272]    [Pg.327]   
See also in sourсe #XX -- [ Pg.201 , Pg.202 , Pg.203 , Pg.204 , Pg.205 , Pg.206 , Pg.207 , Pg.208 ]




SEARCH



Preparation structure

Sample structure

Sampling structures

Structures preparing

Surface preparation

Surface samples

© 2024 chempedia.info