Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample in-process

The sample to be analyzed can be dissolved in an organic solvent, xylene or methylisobutyl ketone. Generally, for reasons of reproducibility and because of matrix effects (the surroundings affect the droplet size and therefore the effectiveness of the nebulization process), it is preferable to mineralize the sample in H2SO4, evaporate it and conduct the test in an aqueous environment. [Pg.34]

As a consequence, other than its use in the ndM method, the refractive index is very often used in process operations because it can indicate smaii differences in product quality that would be missed by other measurements. The only restriction is that the color of the sample should be less than 5 on the ASTM D 1500 scale. [Pg.44]

Fig.l, Change of the reflected signal with scanning of a sample as parallelepiped with internal apertures. 1 - sample Ks 1 2 - sample iNs 2 3 -difference of the reflected signals 4 - difference of the reflected signals after mathematical processing. The area from 12 up to 14 corresponds to an additional aperture (defect). [Pg.883]

Once a sample is properly oriented and polished, it is placed into a UHV chamber for the final preparation steps. Samples are processed in situ by a variety of methods in order to produce an atomically clean and flat surface. Ion bombardment and aimealing (IBA) is the most conunon method used. Other methods include cleaving and film growth. [Pg.303]

Typically, PIXE measurements are perfonned in a vacuum of around 10 Pa, although they can be perfonned in air with some limitations. Ion currents needed are typically a few nanoamperes and current is nonnally not a limiting factor in applying the teclmique with a particle accelerator. This beam current also nonnally leads to no significant damage to samples in the process of analysis, offering a non-destmctive analytical method sensitive to trace element concentration levels. [Pg.1843]

In this problem you will collect and analyze data in a simulation of the sampling process. Obtain a pack of M M s or other similar candy. Obtain a sample of five candies, and count the number that are red. Report the result of your analysis as % red. Return the candies to the bag, mix thoroughly, and repeat the analysis for a total of 20 determinations. Calculate the mean and standard deviation for your data. Remove all candies, and determine the true % red for the population. Sampling in this exercise should follow binomial statistics. Calculate the expected mean value and expected standard deviation, and compare to your experimental results. [Pg.228]

Typical Cl processes in which neutral sample molecules (M) react with NH to give either (a) a protonated ion [M + HJ or (b) an adduct ion [M + NHJ+ the quasi-molecular ions are respectively 1 and 18 mass units greater than the true mass (M). In process (c), reagent ions (CjHf) abstract hydrogen, giving a quasi-molecular ion that is 1 mass unit less than M. [Pg.4]

Edx is based on the emission of x-rays with energies characteristic of the atom from which they originate in Heu of secondary electron emission. Thus, this technique can be used to provide elemental information about the sample. In the sem, this process is stimulated by the incident primary beam of electrons. As will be discussed below, this process is also the basis of essentially the same technique but performed in an electron spectrometer. When carried out this way, the technique is known as electron microprobe analysis (ema). [Pg.271]

One other very important attribute of photoemitted electrons is the dependence of their kinetic energy on chemical environment of the atom from which they originate. This feature of the photoemission process is called the chemical shift of and is the basis for chemical information about the sample. In fact, this feature of the xps experiment, first observed by Siegbahn in 1958 for a copper oxide ovedayer on a copper surface, led to his original nomenclature for this technique of electron spectroscopy for chemical analysis or esca. [Pg.277]

Laboratory Information Management System. The QC lab must analy2e raw material, in-process, and finished product samples adhere to cahbration schedules record data and perform statistical analyses. These activities lend themselves to the appHcation of software packages such as a laboratory information management system (LIMS) (qv). An inexpensive LIMS is within the reach of even small laboratories. [Pg.368]

Sample preparation is straightforward for a scattering process such as Raman spectroscopy. Sample containers can be of glass or quartz, which are weak Raman scatterers, and aqueous solutions pose no problems. Raman microprobes have a spatial resolution of - 1 //m, much better than the diffraction limit imposed on ir microscopes (213). Eiber-optic probes can be used in process monitoring (214). [Pg.318]

The elemental composition of the three maceral groups varies. The vitrinite, which frequently is about 85% of the sample in the United States, is similar to the patent coal. The liptinites are richer in hydrogen, whereas the inertinites are relatively deficient in hydrogen and richer in carbon. The liptinites also contain more aliphatic materials the inertinites are richer in aromatics. The term inertinite refers to the relative chemical inertness of this material, making it especially undesirable for Hquefaction processes because it tends to accumulate in recycled feedstock streams. [Pg.214]

Sample Transport Transport time, the time elapsed between sample withdrawal from the process and its introduction into the analyzer, shoiild be minimized, particiilarly if the analyzer is an automatic analyzer-controller. Any sample-transport time in the analyzer-controller loop must be treated as equivalent to process dead time in determining conventional feedback controller settings or in evaluating controller performance. Reduction in transport time usually means transporting the sample in the vapor state. [Pg.767]

Process-Gas Sampling In samphng process gases either to... [Pg.1581]


See other pages where Sample in-process is mentioned: [Pg.399]    [Pg.88]    [Pg.88]    [Pg.129]    [Pg.399]    [Pg.617]    [Pg.2]    [Pg.208]    [Pg.399]    [Pg.88]    [Pg.88]    [Pg.129]    [Pg.399]    [Pg.617]    [Pg.2]    [Pg.208]    [Pg.593]    [Pg.882]    [Pg.307]    [Pg.1625]    [Pg.2488]    [Pg.2949]    [Pg.234]    [Pg.222]    [Pg.429]    [Pg.707]    [Pg.714]    [Pg.43]    [Pg.104]    [Pg.356]    [Pg.200]    [Pg.233]    [Pg.368]    [Pg.302]    [Pg.111]    [Pg.11]    [Pg.339]    [Pg.292]    [Pg.426]    [Pg.765]    [Pg.767]    [Pg.769]    [Pg.1750]   
See also in sourсe #XX -- [ Pg.354 ]




SEARCH



Frequency Sampling Filters in Process Identification

In-process control sampling

In-process sampling

In-process sampling

Process Sample

Process sampling

Processes Occurring in the Plasma after Introduction of a Sample

Sample processing

© 2024 chempedia.info