Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample characterization mass spectrometry

Mass spectrometry methods have experienced a steadily increasing use in polymer analyses due to their high sensitivity (<10 mol suffice for analysis), selectivity (minor components can be analyzed within a mixture), specificity (exact mass and fragmentation patterns serve as particularly specific compositional characteristics), and speed (data acquisition possible within seconds). As mentioned, the analysis of a polymer (or any other sample) by mass spectrometry presupposes that the polymer can at least partly be converted to gas-phase ions. This chapter briefly reviews the ionization methods and instrumentation available today for the characterization of synthetic macro molecules. [Pg.15]

The main advantages of the ms/ms systems are related to the sensitivity and selectivity they provide. Two mass analyzers in tandem significantly enhance selectivity. Thus samples in very complex matrices can be characterized quickly with Htde or no sample clean-up. Direct introduction of samples such as coca leaves or urine into an ms or even a gc/lc/ms system requires a clean-up step that is not needed in tandem mass spectrometry (28,29). Adding the sensitivity of the electron multiplier to this type of selectivity makes ms/ms a powerhil analytical tool, indeed. It should be noted that introduction of very complex materials increases the frequency of ion source cleaning compared to single-stage instmments where sample clean-up is done first. [Pg.405]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

It is worth noting, prior to citing actual metal atom studies, the recent secondary ion mass spectrometry (SIMS) on an argon matrix-isolated propene sample, demonstrating the applicability of SIMS analysis to the characterization of matrix-isolated species. The same group h s reported the first C NMR spectra of organic molecules trapped in an argon matrix. ... [Pg.167]

Larsson, L. Saraf, A. Use of gas chromatography-ion trap mass spectrometry for the detection and characterization of microorganisms in complex samples. Mol. Biotechnol. 1997, 7, 279-287. [Pg.34]

The results for bacterial whole-cell analysis described here establish the utility of MALDI-FTMS for mass spectral analysis of whole-cell bacteria and (potentially) more complex single-celled organisms. The use of MALDI-measured accurate mass values combined with mass defect plots is rapid, accurate, and simpler in sample preparation then conventional liquid chromatographic methods for bacterial lipid analysis. Intact cell MALDI-FTMS bacterial lipid characterization complements the use of proteomics profiling by mass spectrometry because it relies on accurate mass measurements of chemical species that are not subject to posttranslational modification or proteolytic degradation. [Pg.295]

The ability to resolve and characterize complicated protein mixtures by the combination of 2DLC and online mass spectrometry permits the combination of sample fractionation/simplification, top-down protein mass information, and bottom-up peptide level studies. In our lab, the simplified fractions generated by 2D(IEX-RP)LC are digested and analyzed using common peptide-level analysis approaches, including peptide mass fingerprinting (Henzel et al., 1993 Mann et al., 1993), matrix-assisted laser desorption/ionization (MALDI) QTOF MS/MS (Millea et al., 2006), and various capillary LC/MS/MS methodologies (e.g., Ducret et al., 1998). [Pg.308]

It needs to be pointed out, that the investigation of some technically important polymers like polyolefines has not been very successful so far. Owing to their inert nature they are difficult to dissolve and also difficult to ionize. Typically one needs for the ionization process some heterogeneities or double bonds in the polymer. For some insoluble substances a solvent-free sample preparation method has been developed that allows a characterization by MALDI-TOF mass spectrometry [93]. [Pg.239]

Fulcrand H, Mane C, Preys S, Mazerolles G, Bouchut C, Mazauric JP, Souquet JM, Meudec E, Li Y, Cole RB and Cheynier V. 2008. Direct mass spectrometry approaches to characterize polyphenol composition of complex samples. Phytochemistry. 69(18) 3131—3138. [Pg.82]

The conventional approach to solvent extraction is the batch method. Early work with this method was hampered by the low concentration of the compounds present and the relative insensitivity of the methods of characterization. Thus lipids and hydrocarbons have been separated from seawater by extraction with petroleum ether and ethyl acetate. The fractionation techniques include column and thin-layer chromatography with final characterisation by thin-layer chromatography, infrared, and ultra-violet spectroscopy and gas chromatography. Of these techniques, only gas chromatography is really useful at levels of organic matter present in seawater. With techniques available today such as glass capillary gas chromatography and mass spectrometry, much more information could be extracted from such samples [20]. [Pg.366]

A fourth technique used for the characterization of molecules is mass spectrometry. It is included in this chapter because the structural information it provides is similar to that obtained from the other techniques although the principle is entirely different. It is a destructive method in which the fragmentation pattern of sample molecules is used to determine empirical formulae and molecular weights, and to identify structural features. [Pg.354]

Modern spectroscopy plays an important role in pharmaceutical analysis. Historically, spectroscopic techniques such as infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used primarily for characterization of drug substances and structure elucidation of synthetic impurities and degradation products. Because of the limitation in specificity (spectral and chemical interference) and sensitivity, spectroscopy alone has assumed a much less important role than chromatographic techniques in quantitative analytical applications. However, spectroscopy offers the significant advantages of simple sample preparation and expeditious operation. [Pg.265]

Proteomics studies aim at answering questions about a biological system by characterizing all its proteins (see also Chapter 10). The proteins are typically characterized by analyzing carefully chosen samples from the biological system by mass spectrometry... [Pg.211]


See other pages where Sample characterization mass spectrometry is mentioned: [Pg.323]    [Pg.459]    [Pg.340]    [Pg.74]    [Pg.66]    [Pg.235]    [Pg.37]    [Pg.33]    [Pg.894]    [Pg.101]    [Pg.5]    [Pg.113]    [Pg.607]    [Pg.705]    [Pg.28]    [Pg.40]    [Pg.55]    [Pg.140]    [Pg.238]    [Pg.249]    [Pg.279]    [Pg.431]    [Pg.434]    [Pg.90]    [Pg.239]    [Pg.528]    [Pg.198]    [Pg.348]    [Pg.175]    [Pg.141]    [Pg.84]    [Pg.426]    [Pg.333]    [Pg.295]    [Pg.277]    [Pg.139]   
See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Mass characterization

Mass spectrometry characterization

Mass spectrometry characterized

Sample characterization

Sample mass

Sample mass spectrometry

Sample spectrometry

Spectrometry characterization

© 2024 chempedia.info