Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiocyanate Salts

Care must be exercised in using sodium nitrite near other chemicals. It is incompatible with ammonium salts, thiocyanates, thiosulfates, and strong reducing agents. In acid solutions, sodium nitrite evolves toxic NO in the presence of secondary amines it can form nitrosamines which are suspected carcinogens. [Pg.199]

High density brine completion fluids also often require the use of corrosion inhibitors (8,9). Blends of thioglycolates and thiourea alkyl, alkenyl, or alkynyl phosphonium salts thiocyanate salts mercaptoacetic acid and its salts and the reaction products of pyridine or pyrazine derivatives with dicarboxylic acid monoanhydrides have been used as high density brine corrosion inhibitors. [Pg.23]

The salt pipHSCN, known as piperidinium thiocyanate or piperidine hydrothiocyanate, has a melting point of 95 °C. When metal compounds are added to this molten salt, thiocyanate complexes of the metals are produced. For example, the following reactions can be carried out at 100 °C in the presence of an excess of the amine hydrothiocyanate ... [Pg.700]

The thiocyanate ion SCN forms an intensely red-coloured complex (most simply represented as [Fe(SCN)(H20)5] ) which is a test for iron(III). However, unlike cobalt(III), iron(lll) does not form stable hexammines in aqueous solution, although salts containing the ion [FefNHj) ] can be obtained by dissolving anhydrous iron(III) salts in liquid ammonia. [Pg.395]

Copperil) cyanide. CuCN (and copperil) thiocyanate), are similarly obtained as white precipitates on adding cyanide and thiocyanate ions (not in excess) respectively to copper(II) salts ... [Pg.415]

In the former, it gives precipitates with halides (except the fluoride), cyanides, thiocyanates, chromates(VI), phosphate(V), and most ions of organic acids. The silver salts of organic acids are obtained as white precipitates on adding silver nitrate to a neutral solution of the acid. These silver salts on ignition leave silver. When this reaction is carried out quantitatively, it provides a means of determining the basicity of the acid... [Pg.430]

In 1877, Nencki (22) condensing ammonium thiocyanate with chloroacetic acid, attributed the name rhodaninic acid (Rhodaninsaure) to the compound he obtained. He noted the ability of rhodaninic acid to give colored derivatives with ferric salts. [Pg.19]

The first reported synthesis of acrylonitrile [107-13-1] (qv) and polyacrylonitrile [25014-41-9] (PAN) was in 1894. The polymer received Htde attention for a number of years, until shortly before World War II, because there were no known solvents and the polymer decomposes before reaching its melting point. The first breakthrough in developing solvents for PAN occurred at I. G. Farbenindustrie where fibers made from the polymer were dissolved in aqueous solutions of quaternary ammonium compounds, such as ben2ylpyridinium chloride, or of metal salts, such as lithium bromide, sodium thiocyanate, and aluminum perchlorate. Early interest in acrylonitrile polymers (qv), however, was based primarily on its use in synthetic mbber (see Elastomers, synthetic). [Pg.274]

Dimethylformamide [68-12-2] (DME) and dimethyl sulfoxide [67-68-5] (DMSO) are the most commonly used commercial organic solvents, although polymerizations ia y-butyrolactoae, ethyleae carboaate, and dimethyl acetamide [127-19-5] (DMAC) are reported ia the hterature. Examples of suitable inorganic salts are aqueous solutioas of ziac chloride and aqueous sodium thiocyanate solutions. The homogeneous solution polymerization of acrylonitrile foUows the conventional kinetic scheme developed for vinyl monomers (12) (see Polymers). [Pg.277]

Basic Extractants. Only long-chain quaternary ammonium salts, R3NCH3 X , ia which R represents Cg—0 2 groups and X nitrate or thiocyanate, are effectively used for REE separations (see Quaternary ammonium compounds). The extractant reacts with REE according to an anion-exchange reaction ... [Pg.545]

Therefore the extent of extraction or back-extraction is governed by the concentration of X ia the aqueous phase, the distribution coefficients, and selectivities depending on the anion. In nitrate solutions, the distribution coefficient decreases as the atomic number of the REE increases, whereas ia thiocyanate solutions, the distribution coefficient roughly increases as the atomic number of the REE increases. The position of yttrium in the lanthanide series is not the same in nitrate and thiocyanate solutions, and this phenomenon has been used for high purity yttrium manufacture in the past. A combination of extraction by carboxyUc acids then by ammonium salts is also utilized for production of high purity yttrium. [Pg.545]

Guanidine salts can be prepared by reaction of thiocyanates and sulfamates (22). [Pg.62]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

Uses. There may be some captive use of carbonyl sulfide for production of certain thiocarbamate herbicides (qv). One patent (38) describes the reaction of diethylamine with carbonyl sulfide to form a thiocarbamate salt which is then alkylated with 4-chloroben2yl haUde to produce 3 -(4-chloroben2yl) A[,A/-diethylthiocarbamate [28249-77-6] ie, benthiocarb [28249-77-6]. Carbonyl sulfide is also reported to be useful for the preparation of abphatic polyureas. In these preparations, potassium thiocyanate and sulfuric acid are used to first generate carbonyl sulfide, COS, which then reacts with a diamine ... [Pg.131]

Free thiocyanic acid [463-56-9] HSCN, can be isolated from its salts, but is not an article of commerce because of its instabiHty, although dilute solutions can be stored briefly. Commercial derivatives of thiocyanic acid are principally ammonium, sodium, and potassium thiocyanates, as weU as several organic thiocyanates. The chemistry and biochemistry of thiocyanic acid and its derivatives have been reviewed extensively (372—374). [Pg.151]

Ana.lytica.1 Methods. Thiocyanate is quantitatively precipitated as silver thiocyanate, and thus can be conveniendy titrated with silver nitrate. In the presence of a ferric salt, a red-brown color, produced by the ferric thiocyanate compex, indicates the end point. [Pg.152]

Thorium compounds of anionic nitrogen-donating species such as [Th(NR2)4], where R = alkyl or sdyl, are weU-known. The nuclearity is highly dependent on the steric requirements of R. Amides are extremely reactive, readily undergoing protonation to form amines or insertion reactions with CO2, COS, CS2, and CSe2 to form carbamates. Tetravalent thorium thiocyanates have been isolated as hydrated species, eg, Th(NCS)4(H20)4 [17837-16-0] or as complex salts, eg, M4 Th(NCS)g] vvH20, where M = NH, Rb, or Cs. [Pg.38]

Chloride. Chloride is common in freshwater because almost all chloride salts are very soluble in water. Its concentration is generally lO " to 10 M. Chloride can be titrated with mercuric nitrate. Diphenylcarbazone, which forms a purple complex with the excess mercuric ions at pH 2.3—2.8, is used as the indicator. The pH should be controlled to 0.1 pH unit. Bromide and iodide are the principal interferences, whereas chromate, ferric, and sulfite ions interfere at levels greater than 10 mg/L. Chloride can also be deterrnined by a colorimetric method based on the displacement of thiocyanate ion from mercuric thiocyanate by chloride ion. The Hberated SCN reacts with ferric ion to form the colored complex of ferric thiocyanate. The method is suitable for chloride concentrations from 10 to 10 M. [Pg.231]

Methane sulfonic acid, trifluoroacetic acid, hydrogen iodide, and other Brmnsted acids can faciUtate 3 -acetoxy displacement (87,173). Displacement yields can also be enhanced by the addition of inorganic salts such as potassium thiocyanate and potassium iodide (174). Because initial displacement of the acetoxy by the added salt does not appear to occur, the role of these added salts is not clear. Under nonaqueous conditions, boron trifluoride complexes of ethers, alcohols, and acids also faciUtate displacement (87,175). [Pg.32]

Arsonium salts have found considerable use in analytical chemistry. One such use involves the extraction of a metal complex in aqueous solution with tetraphenyiarsonium chloride in an organic solvent. Titanium(IV) thiocyanate [35787-79-2] (157) and copper(II) thiocyanate [15192-76-4] (158) in hydrochloric acid solution have been extracted using tetraphenyiarsonium chloride in chloroform solution in this manner, and the Ti(IV) and Cu(II) thiocyanates deterrnined spectrophotometricaHy. Cobalt, palladium, tungsten, niobium, and molybdenum have been deterrnined in a similar manner. In addition to their use for the deterrnination of metals, anions such as perchlorate and perrhenate have been deterrnined as arsonium salts. Tetraphenyiarsonium permanganate is the only known insoluble salt of this anion. [Pg.339]


See other pages where Thiocyanate Salts is mentioned: [Pg.166]    [Pg.103]    [Pg.677]    [Pg.103]    [Pg.236]    [Pg.256]    [Pg.336]    [Pg.337]    [Pg.337]    [Pg.36]    [Pg.6248]    [Pg.547]    [Pg.75]    [Pg.166]    [Pg.103]    [Pg.677]    [Pg.103]    [Pg.236]    [Pg.256]    [Pg.336]    [Pg.337]    [Pg.337]    [Pg.36]    [Pg.6248]    [Pg.547]    [Pg.75]    [Pg.176]    [Pg.196]    [Pg.243]    [Pg.394]    [Pg.395]    [Pg.591]    [Pg.9]    [Pg.280]    [Pg.443]    [Pg.451]    [Pg.77]    [Pg.199]    [Pg.151]    [Pg.152]    [Pg.478]    [Pg.272]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



© 2024 chempedia.info