Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

S kinetic resolution

Recently it was reported that an a-amino-e-caprolactam racemase from Achro-mobacter obae can racemise a-amino acid amides efficiently. In combination with a D-amino acid amidase from Ochrobactrum anthropi L-alanine amide could be converted into D-alanine. This tour de force demonstrates the power of the racemase [84]. If racemic amide is used as a starting material the application of this racemase in combination with a d- or L-amidase allows the preparation of 100% d- or L-amino acid, a dynamic kinetic resolution instead of DSM s kinetic resolution (Scheme 6.24). [Pg.281]

Scheme 24 Miller s kinetic resolution of formamide and thio-formamides using peptides. Scheme 24 Miller s kinetic resolution of formamide and thio-formamides using peptides.
Etheridge ZC, Caddick S. Kinetic resolution of 4,5-dihy-droxylated cyclopentenones. Tetrahedron Asymm. 2004 15 503-507. [Pg.548]

Paterson I, McClure CK, Schumann RC. A short asymmetric synthesis of a C19-C27 segment of rifamycin S. Kinetic resolution in the aldol reactions of ethylketones using chiral boron reagents. Tetrahedron Lett. 1989 30(10) 1293-1296. [Pg.664]

One of the most significant discoveries in asymmetric catalysis is without question Jacobsen s kinetic resolution reaction of racemic mono-substituted epoxides with water [131] and other nucleophUes [32,131,132]. The Co-salen complex 142 provides reliable access to a wide range of terminal epoxides in exceptionally high optical purities (> 99 % ee), as well as the corresponding... [Pg.280]

Sharpless epoxidations can also be used to separate enantiomers of chiral allylic alcohols by kinetic resolution (V.S. Martin, 1981 K.B. Sharpless, 1983 B). In this procedure the epoxidation of the allylic alcohol is stopped at 50% conversion, and the desired alcohol is either enriched in the epoxide fraction or in the non-reacted allylic alcohol fraction. Examples are given in section 4.8.3. [Pg.126]

In the Sharpless epoxidation of divinylmethanols only one of four possible stereoisomers is selectively formed. In this special case the diastereotopic face selectivity of the Shaipless reagent may result in diastereomeric by-products rather than the enantiomeric one, e.g., for the L -(-(-)-DIPT-catalyzed epoxidation of (E)-a-(l-propenyl)cyclohexaneraethanol to [S(S)-, [R(S)-, [S(R)- and [R(R)-trans]-arate constants is 971 19 6 4 (see above S.L. Schreiber, 1987). This effect may strongly enhance the e.e. in addition to the kinetic resolution effect mentioned above, which finally reduces further the amount of the enantiomer formed. [Pg.126]

Dihydronaphthalene is often used as a model olefin in the study of epoxidation catalysts, and very often gives product epoxides in unusually high ee s. In 1994, Jacobsen discovered in his study on the epoxidation of 1,2-dihydronaphthalene that the ee of the epoxide increases at the expense of the minor enantiomeric epoxide.Further investigation led to the finding that certain epoxides, especially cyclic aromatically conjugated epoxides, undergo kinetic resolution via benzylic hydroxylation up to a krei of 28 (Scheme 1.4.9). [Pg.39]

Pineschi and Feringa reported that chiral copper phosphoramidite catalysts mediate a regiodivergent kinetic resolution (RKR) of cyclic unsaturated epoxides with dialkylzinc reagents, in which epoxide enantiomers are selectively transformed into different regioisomers (allylic and homoallylic alcohols) [90]. The method was also applied to both s-cis and s-trans cyclic allylic epoxides (Schemes 7.45 and 7.46,... [Pg.261]

Since the addition of dialkylzinc reagents to aldehydes can be performed enantioselectively in the presence of a chiral amino alcohol catalyst, such as (-)-(1S,2/ )-Ar,A -dibutylnorephedrine (see Section 1.3.1.7.1.), this reaction is suitable for the kinetic resolution of racemic aldehydes127 and/or the enantioselective synthesis of optically active alcohols with two stereogenic centers starting from racemic aldehydes128 129. Thus, addition of diethylzinc to racemic 2-phenylpropanal in the presence of (-)-(lS,2/ )-Ar,W-dibutylnorephedrine gave a 75 25 mixture of the diastereomeric alcohols syn-4 and anti-4 with 65% ee and 93% ee, respectively, and 60% total yield. In the case of the syn-diastereomer, the (2.S, 3S)-enantiomer predominated, whereas with the twtf-diastereomer, the (2f ,3S)-enantiomer was formed preferentially. [Pg.23]

In this case study, an enzymatic hydrolysis reaction, the racemic ibuprofen ester, i.e. (R)-and (S)-ibuprofen esters in equimolar mixture, undergoes a kinetic resolution in a biphasic enzymatic membrane reactor (EMR). In kinetic resolution, the two enantiomers react at different rates lipase originated from Candida rugosa shows a greater stereopreference towards the (S)-enantiomer. The membrane module consisted of multiple bundles of polymeric hydrophilic hollow fibre. The membrane separated the two immiscible phases, i.e. organic in the shell side and aqueous in the lumen. Racemic substrate in the organic phase reacted with immobilised enzyme on the membrane where the hydrolysis reaction took place, and the product (S)-ibuprofen acid was extracted into the aqueous phase. [Pg.130]

The hydrolysis of seven alkyl arenesulfinylalkanoates by the bacterium Corynebacterium equi IFO 3730 studied by Ohta and coworkers34 are recent examples of kinetic resolutions which give sulfoxides of high enantiomeric purity and in reasonable yield. Compounds 16a, 16b and 16c were recovered in 30 to 43% yield and in 90 to 97% e.e. The S enantiomers underwent hydrolysis more rapidly than the R isomers. Sulfoxide 17 was isolated in 22% yield and 96% e.e., but sulfoxide 18 was completely metabolized. Esters other than methyl gave inferior results. The acids formed upon hydrolysis, although detected, were for the most part further metabolized by the bacterium. [Pg.60]

When racemic 1,3-dithiane S-monoxide 236 was exposed to the action of the microorganisms, a kinetic resolution took place and ( —)-(S)-236 was obtained with 10% e.e.327. [Pg.296]

Table 1.4 I nfluence ofthe organic solvent on the enantioselectivity ofthe protease subtilisin in the kinetic resolution ofthe racemic alcohol (10) (expressed as the enatiomeric ratio E, that is the ratio of the specificity constants of the two enatiomers, (lfcat/ M)s/... Table 1.4 I nfluence ofthe organic solvent on the enantioselectivity ofthe protease subtilisin in the kinetic resolution ofthe racemic alcohol (10) (expressed as the enatiomeric ratio E, that is the ratio of the specificity constants of the two enatiomers, (lfcat/ M)s/...
The kinetic resolution of rac-1 was chosen as a model reaction using the WT lipase from PAL as the catalyst [6]. The WT shows a very low selectivity factor E = 1.1 in slight favor of (S)-2 (Scheme 2.1). [Pg.28]

Efforts were also made to invert the sense of enantioselectivity in the hydrolytic kinetic resolution of ester (1) using PAL with preferential formation of (R)-2 [40,411-Using epPCR and DNA shuffling, an (R)-selective mutant showing an E value of 30 was evolved by screening about 45 000 clones for the (R) enantiomer. The best mutant is characterized by 11 mutations, which are different from those of the best (S)-selective variant X [41]. [Pg.33]

Several reports regarding the directed evolution of enantioselective epoxide hydrolases (EHs) have appeared [23,57-59]. These enzymes constitute important catalysts in synthetic organic chemistry [4,60]. The first two reported studies concern the Aspergillus niger epoxide hydrolase (ANEH) [57,58]. Initial attempts were made to enhance the enantioselectivity of the AN E H -catalyzed hydrolytic kinetic resolution of glycidyl phenyl ether (rac-19). The WT leads to an Evalue of only 4.6 in favor of (S)-20 (see Scheme 2.4) [58]. [Pg.41]

The phosphotriesterase from Pseudomonas diminuta was shown to catalyze the enantioselective hydrolysis of several racemic phosphates (21), the Sp isomer reacting faster than the Rp compound [65,66]. Further improvements using directed evolution were achieved by first carrying out a restricted alanine-scan [67] (i.e. at predetermined amino acid positions alanine was introduced). Whenever an effect on activity/ enantioselectivity was observed, the position was defined as a hot spot. Subsequently, randomization at several hot spots was performed, which led to the identification of several highly (S)- or (R)-selective mutants [66]. A similar procedure was applied to the generation of mutant phosphotriesterases as catalysts in the kinetic resolution of racemic phosphonates [68]. [Pg.45]

CHMO is known to catalyze a number of enantioselective BV reactions, including the kinetic resolution of certain racemic ketones and desymmetrization of prochiral substrates [84—87]. An example is the desymmetrization of 4-methylcyclohexanone, which affords the (S)-configurated seven-membered lactone with 98% ee [84,87]. Of course, many ketones fail to react with acceptable levels of enantioselectivity, or are not even accepted by the enzyme. [Pg.50]

A kinetic resolution depends on the fact that the two enantiomers of a racemic substrate react at different rates with the enzyme. The process is outlined in Figure 6.1, assuming that the (S) substrate is the fast-reacting enantiomer (ks > ka) and Kic = 0-In ideal cases, only one enantiomer is consumed and the reaction ceases at 50% conversion. In most cases, both enantiomers are transformed and the enantiomeric composition ofthe product and the remaining starting material varies with the extent... [Pg.134]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

Dynamic kinetic resolution of a-alkyl-P-keto ester was conducted successfully using biocatalysts. For example, baker s yeast gave selectively syn(2R, 3S)-product [29a] and the selectivity was enhanced by using selective inhibitor [29b] or heat treatment of the yeast [29c]. Organic solvent was used for stereochemical control of G. candidum [29d]. Plant cell cultures were used for reduction of 2-methyl-3-oxobu-tanoate and afforded antialcohol with Marchantia [29e,f] and syn-isomer with Glycine max [29f]. [Pg.221]

Another example of dynamic kinetic resolution is the reduction of a sulfur-substituted ketone. Thus, yeast reduction of (R/S)-2-(4-methoxyphenyl)-l, 5-benzothiazepin-3,4(2H, 5H)-dione gave only (2S, 3S)-alcohol as a product out of four possible isomers as shown in Figure 8.39c [29kj. Only (S)-ketone was recognized by the enzyme as a substrate and reduction of the ketone proceeded... [Pg.222]


See other pages where S kinetic resolution is mentioned: [Pg.21]    [Pg.17]    [Pg.331]    [Pg.2925]    [Pg.10]    [Pg.21]    [Pg.17]    [Pg.331]    [Pg.2925]    [Pg.10]    [Pg.1310]    [Pg.126]    [Pg.167]    [Pg.65]    [Pg.250]    [Pg.128]    [Pg.132]    [Pg.183]    [Pg.1201]    [Pg.73]    [Pg.38]    [Pg.45]    [Pg.90]    [Pg.110]    [Pg.161]    [Pg.235]    [Pg.245]    [Pg.249]    [Pg.293]    [Pg.302]   
See also in sourсe #XX -- [ Pg.980 ]




SEARCH



Jacobsen’s kinetic resolution

© 2024 chempedia.info