Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium-based catalyst systems

As the next step in multiphasic hydrogenation, the design and implementation of a continuously driven loop reactor as a laboratory-scale plant model led to comparable selectivity applying the same water soluble ruthenium-based catalyst system. [Pg.15]

After having observed that the most active ruthenium-based catalyst systems for olefin metathesis also displayed a high efficiency in atom transfer radical polymerisation, we then became interested in comparing the role of the catalyst in those two different reaction pathways. Ruthenium alkylidene complexes 4-6 are unsaturated 16-electron species which formally allow carbon-halogen bond activation to form a 17-electron ruthenium(III) intermediate. Our preliminary results indicate that polymerisations occur through a pathway in which both tricyclohexylphosphine and/or imidazolin-2-ylidene ligands remain bound to the metal centre. [Pg.233]

The use of water-soluble ligands was referred to previously for both ruthenium and rhodium complexes. As in the case of ruthenium complexes, the use of an aqueous biphasic system leads to a clear enhancement of selectivity towards the unsaturated alcohol [34]. Among the series of systems tested, the most convenient catalysts were obtained from mixtures of OsCl3 3H20 with TPPMS (or better still TPPTS) as they are easily prepared and provide reasonable activities and modest selectivities. As with their ruthenium and rhodium analogues, the main advantage is the ease of catalyst recycling with no loss of activity or selectivity. However, the ruthenium-based catalysts are far superior. [Pg.426]

There is increased interest in the use of Ru-based systems as catalysts for oxygen reduction in acidic media, because these systems have potential applications in practicable direct methanol fuel cell systems. The thermolysis of Ru3(CO)i2 has been studied to tailor the preparation of such materials [123-125]. The decarbon-ylation of carbon-supported catalysts prepared from Ru3(CO)i2 and W(CO)6, Mo(CO)is or Rh(CO)is in the presence of selenium has allowed the preparation of catalysts with enhanced activity towards oxygen reduction, when compared with the monometallic ruthenium-based catalyst [126],... [Pg.329]

The activity of this ruthenium system is comparable to, or somewhat greater than, that of cobalt catalysts under the same conditions of temperature and pressure. Rhodium catalysts provide substantially higher activity than either of these systems. As will be seen later, however, addition of ionic promoters can greatly increase the activity of ruthenium-based catalysts. [Pg.379]

The bis-indole diphosphine delivers the best ee and as the heterocyclic units are also electron rich aromatics this also gives the added advantage of the highest activity of the catalyst system. This overcomes one drawback often encountered, that high hydrogen pressures are frequently needed for ruthenium-based catalysts. [Pg.10]

A ruthenium based catalytic system was developed by Trost and coworkers and used for the intermolecular Alder-ene reaction of unactivated alkynes and alkenes [30]. In initial attempts to develop an intramolecular version it was found that CpRu(COD)Cl catalyzed 1,6-enyne cycloisomerizations only if the olefins were monosubstituted. They recently discovered that if the cationic ruthenium catalyst CpRu(CH3CN)3+PF6 is used the reaction can tolerate 1,2-di- or tri-substituted alkenes and enables the cycloisomerization of 1,6- and 1,7-enynes [31]. The formation of metallacyclopentene and a /3-hydride elimination mechanism was proposed and the cycloisomerization product was formed in favor of the 1,4-diene. A... [Pg.457]

Abstract Metathesis-based polymerizations of 1-alkynes and cyclopolymerizations of 1,6-heptadiynes using late transition metal catalysts are reviewed. Results obtained with both binary, ternary, and quaternary catalytic systems and well-defined molybdenum- and ruthenium-based catalysts are presented. Special consideration is given to advancements in catalyst design and mechanistic understanding that have been made in this area over the last few years advancements that have facilitated tailor-made syntheses of poly(ene)s. In addition, the first supported ruthenium-based cyclopolymerization-active systems are summarized. Finally, selected structure-dependent properties will be outlined where applicable. [Pg.89]

On the other hand, late transition metal-based catalyst systems that had been identified by the early 1990s were characterized by low activity but high functional group tolerance, especially toward water and other protic solvents. These features led to reinvestigations of ruthenium systems and, ultimately, to the preparation of the first well-defined, ruthenium-carbene olefin metathesis catalyst (PPh3)2(Cl)2Ru=CHCH=Ph2 (Ru-1) in 1992 [5]. [Pg.155]

In this work we have studied ruthenium based catalysts. It is known that ruthenium is among the most active and stable catalysts for the reforming of CH4 with CO2 [2]. As catalystsupport we have used a high surface area activated carbon (AC). In order to improve the catalytic properties of the Ru/AC system, different loadings of magnesium oxide have... [Pg.399]

Rhodium-based catalysis suffers from the high cost of the metal and quite often from a lack of stereoselectivity. This justifies the search for alternative catalysts. In this context, ruthenium-based catalysts look rather attractive nowadays, although still poorly documented. Recently, diruthenium(II,II) tetracarboxylates [42], polymeric and dimeric diruthenium(I,I) dicarboxylates [43], ruthenacarbor-ane clusters [44], and hydride and silyl ruthenium complexes [45 a] and Ru porphyrins [45 b] have been introduced as efficient cyclopropanation catalysts, superior to the Ru(II,III) complex Ru2(OAc)4Cl investigated earlier [7]. In terms of efficiency, electrophilicity, regio- and (partly) stereoselectivity, the most efficient ruthenium-based catalysts compare rather well with the rhodium(II) carboxylates. The ruthenium systems tested so far seem to display a slightly lower level of activity but are somewhat more discriminating in competitive reactions, which apparently could be due to the formation of less electrophilic carbenoid species. This point is probably related to the observation that some ruthenium complexes competitively catalyze both olefin cyclopropanation and olefin metathesis [46], which is at variance with what is observed with the rhodium catalysts. [Pg.805]


See other pages where Ruthenium-based catalyst systems is mentioned: [Pg.59]    [Pg.190]    [Pg.335]    [Pg.307]    [Pg.59]    [Pg.190]    [Pg.335]    [Pg.307]    [Pg.147]    [Pg.375]    [Pg.80]    [Pg.562]    [Pg.70]    [Pg.291]    [Pg.303]    [Pg.384]    [Pg.187]    [Pg.117]    [Pg.7]    [Pg.27]    [Pg.540]    [Pg.155]    [Pg.1028]    [Pg.2804]    [Pg.154]    [Pg.161]    [Pg.229]    [Pg.76]    [Pg.350]    [Pg.251]    [Pg.257]    [Pg.2803]    [Pg.200]    [Pg.200]    [Pg.500]    [Pg.24]    [Pg.369]    [Pg.155]    [Pg.125]    [Pg.870]    [Pg.287]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Catalyst system

Heterogeneous ruthenium-based catalyst systems

Ruthenium system

© 2024 chempedia.info