Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversed optimization

Partially vaporized feed reverses these effects. For a given separation, the feed conditions can be optimized. No attempt should be made to do this at this stage in the design, since heat integration is likely to change the optimal setting later in the design. It is usually adequate to set the feed to saturated liquid conditions. This tends to equalize the vapor rate below and above the feed. [Pg.78]

Klippenstein S J 1992 Variational optimizations in the Rice-Ramsperger-Kassel-Marcus theory calculations for unimolecular dissociations with no reverse barrier J. Chem. Rhys. 96 367-71... [Pg.1039]

We find it convenient to reverse the historical ordering and to stait with (neatly) exact nonrelativistic vibration-rotation Hamiltonians for triatomic molecules. From the point of view of molecular spectroscopy, the optimal Hamiltonian is that which maximally decouples from each other vibrational and rotational motions (as well different vibrational modes from one another). It is obtained by employing a molecule-bound frame that takes over the rotations of the complete molecule as much as possible. Ideally, the only remaining motion observable in this system would be displacements of the nuclei with respect to one another, that is, molecular vibrations. It is well known, however, that such a program can be realized only approximately by introducing the Eckart conditions [38]. [Pg.502]

High temperature searches of conformational space (see Quenched Dynamics" on page 78), can produce unwanted conformational changes, such as cis-tmnx peptide flips, ring inversions, and other changes that you cannot reverse easily by geometry optimization. You can use restraints to prevent these changes. [Pg.82]

Variational transition state theory (VTST) is formulated around a variational theorem, which allows the optimization of a hypersurface (points on the potential energy surface) that is the elfective point of no return for reactions. This hypersurface is not necessarily through the saddle point. Assuming that molecules react without a reverse reaction once they have passed this surface... [Pg.166]

Solvent triangle for optimizing reverse-phase HPLC separations. Binary and ternary mixtures contain equal volumes of each of the aqueous mobile phases making up the vertices of the triangle. [Pg.582]

Another example is the purification of a P-lactam antibiotic, where process-scale reversed-phase separations began to be used around 1983 when suitable, high pressure process-scale equipment became available. A reversed-phase microparticulate (55—105 p.m particle size) C g siUca column, with a mobile phase of aqueous methanol having 0.1 Af ammonium phosphate at pH 5.3, was able to fractionate out impurities not readily removed by hquid—hquid extraction (37). Optimization of the separation resulted in recovery of product at 93% purity and 95% yield. This type of separation differs markedly from protein purification in feed concentration ( i 50 200 g/L for cefonicid vs 1 to 10 g/L for protein), molecular weight of impurities (<5000 compared to 10,000—100,000 for proteins), and throughputs ( i l-2 mg/(g stationary phasemin) compared to 0.01—0.1 mg/(gmin) for proteins). [Pg.55]

Given the first type of simulation, it is advantageous to be able to design a system of RO modules that can achieve the process objective at a minimal cost. A model has been iategrated iato a process simulation program to predict the stream matrix for a reverse osmosis process (132). In the area of waste minimization, the proper placement of RO modules is essential for achieving minimum waste at a minimum cost. Excellent details on how to create an optimal network of RO modules is available (96). [Pg.156]

The transalkylation reaction is essentiaHyisothermal and is reversible. A high ratio of benzene to polyethylbenzene favors the transalkylation reaction to the right and retards the disproportionation reaction to the left. Although alkylation and transalkylation can be carried out in the same reactor, as has been practiced in some processes, higher ethylbenzene yield and purity are achieved with a separate alkylator and transalkylator, operating under different conditions optimized for the respective reactions. [Pg.477]

Commercially, the irradiation of the 5,7-diene provitamin to make vitamin D must be performed under conditions that optimize the production of the previtamin while avoiding the development of the unwated isomers. The optimization is achieved by controlling the extent of irradiation, as well as the wavelength of the light source. The best frequency for the irradiation to form previtamin is 295 nm (64—66). The unwanted conversion of previtamin to tachysterol is favored when 254 nm light is used. Sensitized irradiation, eg, with fluorenone, has been used to favor the reverse, triplet-state conversion of tachysterol to previtamin D (73,74). [Pg.131]

Once a direction is estabflshed for the next poiat ia the space of the variables of optimization (whether by random search, by systematic evaluation of gradients, or by any other methods of making perturbations), it is possible to take a jump ia the directioa of the improvement much greater than the size of the perturbations. This could speed up the process of finding the optimum and reduce computer time. If such a leap is successful, the next iteration may take a bigger leap and so on, until the improvement stops. Then one could reverse the direction and decrease the size of the step until the optimum is found. [Pg.79]

CSTBs—minimum volume of battery, maximum yield, optimal temperature for reversible reaction, minimum total cost, reactor volume with recycle, maximum profit for reversible reaction with recycle, and heat loss... [Pg.706]

As k is increased from 0 to A — 1, the algorithm proceeds in reverse time. When run in forward-time, the optimal control at step k is... [Pg.277]

Henee, if the desired state veetor r(t) is known in advanee, traeking errors may be redueed by allowing the system to follow a eommand veetor v(t) eomputed in advanee using the reverse-time equation (9.49). An optimal eontroller for a traeking system is shown in Figure 9.2. [Pg.281]

Adesina [14] considered the four main types of reactions for variable density conditions. It was shown that if the sums of the orders of the reactants and products are the same, then the OTP path is independent of the density parameter, implying that the ideal reactor size would be the same as no change in density. The optimal rate behavior with respect to T and the optimal temperature progression (T p ) have important roles in the design and operation of reactors performing reversible, exothermic reactions. Examples include the oxidation of SO2 to SO3 and the synthesis of NH3 and methanol CH3OH. [Pg.543]

Omoleye, J. A., Adesina, A. A., and Udegbunam, E. O., Optimal design of nonisothermal reactors Derivation of equations for the rate-temperature conversion profile and the optimum temperature progression for a general class of reversible reactions, Chem. Eng. Comm., Vol. 79, pp. 95-107, 1989. [Pg.551]

In most industrial applications, it is rare that a single RO module can be used to address the separation task. Instead, a reverse-osmosis network (RON) is employed. A RON is composed of multiple RO modules, pumps and turbines, llie following sections describe the problem of synthesizing a system of RO modules and a systematic procedure for designing an optimal RON. Once a RON is synthesized, it can be incorporated with a mass integration framework (see Problem 11.6). [Pg.273]

The task of synthesizing an optimal RON can be stated as follows For a given feed flowrate, Qf. and a feed concentration, Cp. it is desired to synthesize a minimum cost system of reverse osmosis modules, booster pumps and energy-recovery turbines Chat can separate the feed into two streams an environmentally acceptable permeate and a retentate (reject) stream in which the undesired species is concentrated. The permeate stream must meet two requirements ... [Pg.273]

Zhu, M., El-Halwagi, M. M., and Al-Ahmad, M. (1997). Optimal design and scheduling of flexible reverse osmosis networks. J. Membr. Sci., (in press). [Pg.288]

K. Grob, Concurrent eluent evapor ation with co-solvent Capping for on-line reversed-phase liquid cliromatography-gas clir omatogr aphy. Optimization of conditions , J. Chromatogr. 477 73-86 (1989). [Pg.43]

Moore and Jorgenson eombined the rapid two-dimensional separation aehieved by LC-CZE with SEC to make the first eomprehensive three-dimensional separation involving an eleetrodriven eomponent in 1995. Size exelusion ehromatography separated the analytes over a period of several hours while the reverse phase HPLC-CZE eombination separated eomponents in only 7 min. A sehematie diagram of the three-dimensional SEC-reverse phase HPLC-CZE instrument is shown in Eigure 9.9 (18). A dilution tee was plaeed between the SEC eolumn and the reverse phase HPLC injeetion loop in order to dilute the eluent from the SEC eolumn, sinee it eon-tained more methanol than was optimal for the reverse phase HPLC eolumn. [Pg.209]

R. J. Senorans, J. Villen, J. Tabera and M. Heiraiz, Simplex optimization of the direct analysis of free sterols in sunflower oil by on-line coupled reversed phase liquid chromatography-gas clnomatography , 7. Agric. Food Chem. 46 1022-1026 (1998). [Pg.248]

When analytes lack the selectivity in the new polar organic mode or reversed-phase mode, typical normal phase (hexane with ethanol or isopropanol) can also be tested. Normally, 20 % ethanol will give a reasonable retention time for most analytes on vancomycin and teicoplanin, while 40 % ethanol is more appropriate for ristocetin A CSP. The hexane/alcohol composition is favored on many occasions (preparative scale, for example) and offers better selectivity for some less polar compounds. Those compounds with a carbonyl group in the a or (3 position to the chiral center have an excellent chance to be resolved in this mode. The simplified method development protocols are illustrated in Fig. 2-6. The optimization will be discussed in detail later in this chapter. [Pg.38]


See other pages where Reversed optimization is mentioned: [Pg.883]    [Pg.2355]    [Pg.306]    [Pg.542]    [Pg.114]    [Pg.582]    [Pg.670]    [Pg.243]    [Pg.153]    [Pg.273]    [Pg.132]    [Pg.470]    [Pg.298]    [Pg.121]    [Pg.378]    [Pg.398]    [Pg.365]    [Pg.545]    [Pg.295]    [Pg.217]    [Pg.230]    [Pg.212]    [Pg.236]    [Pg.30]    [Pg.38]    [Pg.44]   
See also in sourсe #XX -- [ Pg.154 , Pg.159 ]




SEARCH



Multifactorial Systematic Method Development and Optimization in Reversed-Phase HPLC

Optimal Progression of Temperature for Reversible Exothermic Reactions

Optimal Temperature Trajectories for First-Order Reversible Reactions

Reversed-phase liquid chromatography gradient optimization

Reversed-phase liquid chromatography temperature optimization

Reversed-phase optimization

© 2024 chempedia.info