Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse phase method development selectivity

Results of the study indicate that it is possible to simultaneously detect the active drug substance and most related substances at 0.1% (w/w). Furthermore, the method provides different selectivity than reversed-phase HPLC. As a broader conclusion, this indicates orthogonality to reversed-phase HPLC and suggests the viability of SFC in support of early-phase method development. [Pg.378]

The selection and development of a reversed-phase method can be a straightforward process, and for this reason, many methods have been developed on reversed-phase SPE, especially the C-18 sorbent due to its reliable nature. The following examples describe the reversed-phase extraction of compounds of differing polarities from various matrices, as an indication of the broad extent to which reversed-phase SPE can be applied. [Pg.99]

This chapter provides an overview of modern HPLC method development and discusses approaches for initial method development (column, detector, and mobile phase selection), method optimization to improve resolution, and emerging method development trends. The focus is on reversed-phase methods for quantitative analysis of small organic molecules since RPLC accounts for 60-80% of these applications. Several case studies on pharmaceutical impurity testing are presented to illustrate the method development process. For a detailed treatment of this subject and examples of other sample types, the reader is referred to the classic book on general HPLC method development by L. Snyder et al.1 and book chapters2,3 on pharmaceutical method development by H. Rasmussen et al. Other resources include computer-based training4 and training courses.5... [Pg.194]

The selection of starting conditions is the first step in HPLC method development. Instead of starting with arbitrary conditions or conditions derived from the chromatographer s experience or intuition, the software can predict suitable initial conditions for reversed-phase methods from analyte structures and properties of the sorbent/solvent system [1-3]. If structures are known, the theoretical approach has the potential to save time and effort, since in this way the experimental method development process will start under the theoretically predicted optimum conditions. [Pg.597]

An on-line concentration, isolation, and Hquid chromatographic separation method for the analysis of trace organics in natural waters has been described (63). Concentration and isolation are accompHshed with two precolumns connected in series the first acts as a filter for removal of interferences the second actually concentrates target solutes. The technique is appHcable even if no selective sorbent is available for the specific analyte of interest. Detection limits of less than 0.1 ppb were achieved for polar herbicides (qv) in the chlorotriazine and phenylurea classes. A novel method for deterrnination of tetracyclines in animal tissues and fluids was developed with sample extraction and cleanup based on tendency of tetracyclines to chelate with divalent metal ions (64). The metal chelate affinity precolumn was connected on-line to reversed-phase hplc column, and detection limits for several different tetracyclines in a variety of matrices were in the 10—50 ppb range. [Pg.245]

A selective, sensitive and stability indicating reversed phase-HPLC method was developed for the determination of clarithromycin antibiotic in human plasma. [Pg.395]

In the new polar organic mode, the ratio of acid/base in the mobile phase affects the selectivity and the concentration of acid and base controls the retention. It is suggested to start the method development with a medium concentration (0.1 %) for both acid and base. If retention is too long or too short, the concentration can be increased to 1 % or reduced to 0.01 %. If no selectivity is observed in this mode, reversed phase is recommended as the next step in the protocols. [Pg.38]

When analytes lack the selectivity in the new polar organic mode or reversed-phase mode, typical normal phase (hexane with ethanol or isopropanol) can also be tested. Normally, 20 % ethanol will give a reasonable retention time for most analytes on vancomycin and teicoplanin, while 40 % ethanol is more appropriate for ristocetin A CSP. The hexane/alcohol composition is favored on many occasions (preparative scale, for example) and offers better selectivity for some less polar compounds. Those compounds with a carbonyl group in the a or (3 position to the chiral center have an excellent chance to be resolved in this mode. The simplified method development protocols are illustrated in Fig. 2-6. The optimization will be discussed in detail later in this chapter. [Pg.38]

The PRISMA model was developed by Nyiredy for solvent optimization in TLC and HPLC [142,168-171]. The PRISMA model consists of three parts the selection of the chromatographic system, optimization of the selected mobile phases, and the selection of the development method. Since silica is the most widely used stationary phase in TLC, the optimization procedure always starts with this phase, although the method is equally applicable to all chemically bonded phases in the normal or reversed-phase mode. For the selection of suitable solvents the first experiments are carried out on TLC plates in unsaturated... [Pg.866]

Snyder L.R., Dolan J.W., Molnar I., and Djordjevic, N.M., Selectivity control in reversed-phase HPLC methods development varying temperature and solvent strength to optimize separations, LC-GC, 15 (2), 136, 1997. [Pg.210]

The same group reported in 1986 a sensitive and selective HPLC method employing CL detection utilizing immobilized enzymes for simultaneous determination of acetylcholine and choline [187], Both compounds were separated on a reversed-phase column, passed through an immobilized enzyme column (acetylcholine esterase and choline oxidase), and converted to hydrogen peroxide, which was subsequently detected by the PO-CL reaction. In this period, other advances in this area were carried out such as the combination of solid-state PO CL detection and postcolumn chemical reaction systems in LC [188] or the development of a new low-dispersion system for narrow-bore LC [189],... [Pg.30]

Normal-phase liquid chromatography is thus a steric-selective separation method. The molecular properties of steric isomers are not easily obtained and the molecular properties of optical isomers estimated by computational chemical calculation are the same. Therefore, the development of prediction methods for retention times in normal-phase liquid chromatography is difficult compared with reversed-phase liquid chromatography, where the hydrophobicity of the molecule is the predominant determinant of retention differences. When the molecular structure is known, the separation conditions in normal-phase LC can be estimated from Table 1.1, and from the solvent selectivity. A small-scale thin-layer liquid chromatographic separation is often a good tool to find a suitable eluent. When a silica gel column is used, the formation of a monolayer of water on the surface of the silica gel is an important technique. A water-saturated very non-polar solvent should be used as the base solvent, such as water-saturated w-hexane or isooctane. [Pg.84]


See other pages where Reverse phase method development selectivity is mentioned: [Pg.382]    [Pg.755]    [Pg.201]    [Pg.234]    [Pg.658]    [Pg.1585]    [Pg.62]    [Pg.67]    [Pg.292]    [Pg.80]    [Pg.401]    [Pg.233]    [Pg.154]    [Pg.328]    [Pg.244]    [Pg.274]    [Pg.32]    [Pg.51]    [Pg.225]    [Pg.175]    [Pg.262]    [Pg.56]    [Pg.252]    [Pg.189]    [Pg.150]    [Pg.385]    [Pg.419]    [Pg.526]    [Pg.540]    [Pg.425]    [Pg.123]    [Pg.61]    [Pg.156]    [Pg.141]    [Pg.143]    [Pg.982]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 ]




SEARCH



Developer selectivity

Development phases

Method development

Method phase

Method selection

Method selectivity

Phase selection

Phase selectivity

Reverse phase method development

Reversed selectivity

Reversed-phase methods

Reversed-phase selectivity

SELECT method

Selective development

Selective methods

Selectivity development

Selectivity method development

Selectivity reversal

© 2024 chempedia.info