Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonance Raman spectroscopy structure

Figure 1.15. O2 adducts of (A) the heme/Cu site of HCOs (compound A) and (B and C) two heme/Cu analogs . Structure A is derived from resonance Raman spectroscopy, structure B (derived from 2cFeCu, Figure 1.14, Table 1.2) is based on resonance Raman and H NMR spectroscopic data and structure C is determined by single-crystal X-ray analysis counterion (BPh ) is omitted for clarity . Replication of both the distal and proximal environment in 2cFeCu was required to obtain the biologically relevant ferric-superoxide/Cu isomer of the O2 adduct, not the more common ferric-peroxo-Cu isomer. Figure 1.15. O2 adducts of (A) the heme/Cu site of HCOs (compound A) and (B and C) two heme/Cu analogs . Structure A is derived from resonance Raman spectroscopy, structure B (derived from 2cFeCu, Figure 1.14, Table 1.2) is based on resonance Raman and H NMR spectroscopic data and structure C is determined by single-crystal X-ray analysis counterion (BPh ) is omitted for clarity . Replication of both the distal and proximal environment in 2cFeCu was required to obtain the biologically relevant ferric-superoxide/Cu isomer of the O2 adduct, not the more common ferric-peroxo-Cu isomer.
Kincaid J R 1995 Structure and dynamics of transient species using time-resolved resonance Raman-spectroscopy Biochemical Spectroscopy Methods Enzymol. vol 246, ed K Sauer (San Diego, CA Academic) pp 460-501... [Pg.1175]

Friedman J M 1994 Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin Methods Enzymol. 232 205-31... [Pg.2970]

Hydrogen Abstraction Photoexcited ketone intermolecular hydrogen atom abstraction reactions are an interesting area of research becanse of their importance in organic chemistry and dne to the complex reaction mechanisms that may be possible for these kinds of reactions. Time resolved absorption spectroscopy has typically been nsed to follow the kinetics of these reactions but these experiments do not reveal mnch abont the strnctnre of the reactive intermediates. " Time resolved resonance Raman spectroscopy can be used to examine the structure and properties of the reactive intermediates associated with these reactions. Here, we will briefly describe TR experiments reported by Balakrishnan and Umapathy to study hydrogen atom abstraction reactions in the fluoranil/isopropanol system as an example. [Pg.151]

The crystal structure of a CODH/ACS enzyme was reported only in 2002.43,44 It reveals a trio of Fe, Ni, and Cu at the active site (6). The Cu is linked to the Ni atom through two cysteine-S, the Ni being square planar with two terminal amide ligands. Planarity and amide coordination bear some resemblance to the Ni porphinoid in MCR. A two-metal ion mechanism is likely for acetyl CoA synthesis, in which a Ni-bound methyl group attacks an adjacent Cu—CO fragment with formation of a Cu-acyl intermediate. A methylnickel species in CODH/ACS has been identified by resonance Raman spectroscopy.45... [Pg.250]

The functionalization of zinc porphyrin complexes has been studied with respect to the variation in properties. The structure and photophysics of octafluorotetraphenylporphyrin zinc complexes were studied.762 Octabromoporphyrin zinc complexes have been synthesized and the effects on the 11 NMR and redox potential of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraarylporphyrin were observed.763 The chiral nonplanar porphyrin zinc 3,7,8,12,13,17,18-heptabromo-2-(2-methoxyphenyl)-5,10,15,20-tetraphenylporphyrin was synthesized and characterized.764 X-ray structures for cation radical zinc 5,10,15,20-tetra(2,6-dichlorophenyl)porphyrin and the iodinated product that results from reaction with iodine and silver(I) have been reported.765 Molecular mechanics calculations, X-ray structures, and resonance Raman spectroscopy compared the distortion due to zinc and other metal incorporation into meso dialkyl-substituted porphyrins. Zinc disfavors ruffling over doming with the total amount of nonplanar distortion reduced relative to smaller metals.766 Resonance Raman spectroscopy has also been used to study the lowest-energy triplet state of zinc tetraphenylporphyrin.767... [Pg.1216]

Robert, B. 1999. The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. In The photochemistry of carotenoids, eds. H.A. Frank, A.J. Young, G. Britton, and R.J. Cogdell, pp. 189-201. Dordrecht, the Netherlands Kluwer Academic Publishers. [Pg.135]

Raman spectroscopy is primarily useful as a diagnostic, inasmuch as the vibrational Raman spectrum is directly related to molecular structure and bonding. The major development since 1965 in spontaneous, c.w. Raman spectroscopy has been the observation and exploitation by chemists of the resonance Raman effect. This advance, pioneered in chemical applications by Long and Loehr (15a) and by Spiro and Strekas (15b), overcomes the inherently feeble nature of normal (nonresonant) Raman scattering and allows observation of Raman spectra of dilute chemical systems. Because the observation of the resonance effect requires selection of a laser wavelength at or near an electronic transition of the sample, developments in resonance Raman spectroscopy have closely paralleled the increasing availability of widely tunable and line-selectable lasers. [Pg.466]

Resonance Raman spectroscopy has been applied to studies of polyenes for the following reasons. The Raman spectrum of a sample can be obtained even at a dilute concentration by the enhancement of scattering intensity, when the excitation laser wavelength is within an electronic absorption band of the sample. Raman spectra can give information about the location of dipole forbidden transitions, vibronic activity and structures of electronically excited states. A brief summary of vibronic theory of resonance Raman scattering is described here. [Pg.152]

The use of surface-enhanced resonance Raman spectroscopy (SERRS) as an identification tool in TLC and HPLC has been investigated in detail. The chemical structures and common names of anionic dyes employed as model compounds are depicted in Fig. 3.88. RP-HPLC separations were performed in an ODS column (100 X 3 mm i.d. particla size 5 pm). The flow rate was 0.7 ml/min and dyes were detected at 500 nm. A heated nitrogen flow (200°C, 3 bar) was employed for spraying the effluent and for evaporating the solvent. Silica and alumina TLC plates were applied as deposition substrates they were moved at a speed of 2 mm/min. Solvents A and B were ammonium acetate-acetic acid buffer (pH = 4.7) containing 25 mM tributylammonium nitrate (TBAN03) and methanol, respectively. The baseline separation of anionic dyes is illustrated in Fig. 3.89. It was established that the limits of identification of the deposited dyes were 10 - 20 ng corresponding to the injected concentrations of 5 - 10 /ig/ml. It was further stated that the combined HPLC-(TLC)-SERRS technique makes possible the safe identification of anionic dyes [150],... [Pg.468]

A variety of physical methods has been used to ascertain whether or not surface ruthenation alters the structure of a protein. UV-vis, CD, EPR, and resonance Raman spectroscopies have demonstrated that myoglobin [14, 18], cytochrome c [5, 16, 19, 21], and azurin [13] are not perturbed structurally by the attachment of a ruthenium complex to a surface histidine. The reduction potential of the metal redox center of a protein and its temperature dependence are indicators of protein structure as well. Cyclic voltammetry [5, 13], differential pulse polarography [14,21], and spectroelectrochemistry [12,14,22] are commonly used for the determination of the ruthenium and protein redox center potentials in modified proteins. [Pg.111]

The heme moiety provides de novo designed heme proteins with an intrinsic and spectroscopically rich probe. The interaction of the amide bonds of the peptide or protein with the heme macrocycle provides for an induced circular dichroism spectrum indicative of protein-cofactor interactions. The strong optical properties of the heme macrocycle also make it suitable for resonance Raman spectroscopy. Aside from the heme macrocycle, the encapsulated metal ion itself provides a spectroscopic probe into its electronic structure via EPR spectroscopy and electrochemistry. These spectroscopic and electrochemical tools provide a strong quantitative base for the detailed evaluation of the relative successes of de novo heme proteins. [Pg.433]

Complexes of the [Ru(bpy)2L] " type in which L is a phen-based ligand are discussed next. Perchlorate salts of [Ru(bpy)2(phen)] + and [Ru(bpy)2(5-Mephen)] + have been prepared and structurally characterized. The steric strain within the coordination sphere is relieved in part by twisting of each bpy ligand. Time-resolved resonance Raman spectroscopy has been used to investigate the localization of the excited electron in the MLCT state of [Ru(bpy)2(4,7-Ph2-phen)] In neutral micelles, the electron is localized on the bpy ligands, but in the presence of DNA and anionic surfactants, it is localized on 4,7-Ph2phen when the complex is in aqueous... [Pg.593]

Probing Metalloproteins Electronic absorption spectroscopy of copper proteins, 226, 1 electronic absorption spectroscopy of nonheme iron proteins, 226, 33 cobalt as probe and label of proteins, 226, 52 biochemical and spectroscopic probes of mercury(ii) coordination environments in proteins, 226, 71 low-temperature optical spectroscopy metalloprotein structure and dynamics, 226, 97 nanosecond transient absorption spectroscopy, 226, 119 nanosecond time-resolved absorption and polarization dichroism spectroscopies, 226, 147 real-time spectroscopic techniques for probing conformational dynamics of heme proteins, 226, 177 variable-temperature magnetic circular dichroism, 226, 199 linear dichroism, 226, 232 infrared spectroscopy, 226, 259 Fourier transform infrared spectroscopy, 226, 289 infrared circular dichroism, 226, 306 Raman and resonance Raman spectroscopy, 226, 319 protein structure from ultraviolet resonance Raman spectroscopy, 226, 374 single-crystal micro-Raman spectroscopy, 226, 397 nanosecond time-resolved resonance Raman spectroscopy, 226, 409 techniques for obtaining resonance Raman spectra of metalloproteins, 226, 431 Raman optical activity, 226, 470 surface-enhanced resonance Raman scattering, 226, 482 luminescence... [Pg.457]

Selected entries from Methods in Enzymology [vol, page(s)] Biomolecular vibrational spectroscopy, 246, 377 Raman spectroscopy of DNA and proteins, 246, 389 resonance Raman spectroscopy of metalloproteins, 246, 416 structure and dynamics of transient species using time-resolved resonance Raman spectroscopy, 246, 460 infrared spectroscopy applied to biochemical and biological problems, 246, 501 resonance Raman spectroscopy of quinoproteins, 258, 132. [Pg.698]

DEWAR STRUCTURES KEKULE STRUCTURES RESONANCE RAMAN SPECTROSCOPY RAMAN SPECTROSCOPY Resonance stabilization,... [Pg.778]


See other pages where Resonance Raman spectroscopy structure is mentioned: [Pg.434]    [Pg.124]    [Pg.175]    [Pg.13]    [Pg.90]    [Pg.123]    [Pg.132]    [Pg.286]    [Pg.299]    [Pg.754]    [Pg.490]    [Pg.150]    [Pg.166]    [Pg.60]    [Pg.220]    [Pg.61]    [Pg.190]    [Pg.348]    [Pg.450]    [Pg.37]    [Pg.136]    [Pg.149]    [Pg.434]    [Pg.236]    [Pg.587]    [Pg.614]    [Pg.100]    [Pg.248]    [Pg.101]    [Pg.468]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Raman structures

Resonance Raman

Resonance structures

Resonant Raman spectroscopy

Spectroscopy structure)

© 2024 chempedia.info