Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resolution coefficient 30

A resolution coefficient may be defined to compare the shortest wavelength that can be used in different coupling fluids (Attal and Quate 1976 Wickra-masinghe and Petts 1980). For a given pulse length, the minimum focal length q is proportional to the velocity Vo- If the time interval between echoes is required to be to, then... [Pg.30]

The parameters basic to this discussion are the resolution coefficients (a), defined as the ratio of the retention volumes, measured from the air or solvent peak in GC, and of the capacity factors in HPLC. From these data, readily obtained from the chromatograms (see e.g. Fig. 1), also the difference in free energy of solution or adsorption of the enantiomers can be calculated by the relationship AAG = -RTlna. [Pg.290]

As mentioned in the introduction, it was assumed at one time that stereoselective effects, if they occurred at all, would be very small. The recent studies on chromatographic resolution showed, quite on the contrary, that there are certain selector/selectand pairs which have relatively large resolution coefficients for enantiomers. [Pg.292]

To be more specific, given a mother wavelet with its own time and frequency properties, the small values of scale coefficient a (high frequencies) lead to high time resolution (and poor frequency resolution). Correspondingly, high values of the scale coefficient (low frequencies lead to high frequency resolution (and poor time resolution), (see figure 10)... [Pg.361]

The sensitivity of the luminescence IP s in the systems employed here decreases with increasing x-ray energy more strongly than in the case of x-ray film. Therefore, this phenomenon must be compensated by using thicker lead front and back screens. The specific contrast c,p [1,3] is an appropriate parameter for a comparison between IP s and film, since it may be measured independently of the spatial resolution. Since the absorption coefficient p remains roughly constant for constant tube voltage and the same material, it suffices to measure and compare the scatter ratio k. Fig. 2 shows k as a function of the front and back screen thickness for the IP s for 400 keV and different wall thicknesses. The corresponding measured scatter ratios for x-ray films with 0,1 mm front and back screens of lead are likewise shown. The equivalent value for the front and back screen thicknesses is found from the intersection of the curves for the IP s and the film value. [Pg.470]

More generally, the relaxation follows generalized first-order kinetics with several relaxation times i., as depicted schematically in figure B2.5.2 for the case of tliree well-separated time scales. The various relaxation times detemime the tiimmg points of the product concentration on a logaritlnnic time scale. These relaxation times are obtained from the eigenvalues of the appropriate rate coefficient matrix (chapter A3.41. The time resolution of J-jump relaxation teclmiques is often limited by the rate at which the system can be heated. With typical J-jumps of several Kelvin, the time resolution lies in the microsecond range. [Pg.2119]

Figure B2.5.7 shows the absorption traces of the methyl radical absorption as a fiinction of tune. At the time resolution considered, the appearance of CFt is practically instantaneous. Subsequently, CFl disappears by recombination (equation B2.5.28). At temperatures below 1500 K, the equilibrium concentration of CFt is negligible compared witli (left-hand trace) the recombination is complete. At temperatures above 1500 K (right-hand trace) the equilibrium concentration of CFt is appreciable, and thus the teclmique allows the detennination of botli the equilibrium constant and the recombination rate [54, M]. This experiment resolved a famous controversy on the temperature dependence of the recombination rate of methyl radicals. Wliile standard RRKM theories [, ] predicted an increase of the high-pressure recombination rate coefficient /r (7) by a factor of 10-30 between 300 K and 1400 K, the statistical-adiabatic-chaunel model predicts a... Figure B2.5.7 shows the absorption traces of the methyl radical absorption as a fiinction of tune. At the time resolution considered, the appearance of CFt is practically instantaneous. Subsequently, CFl disappears by recombination (equation B2.5.28). At temperatures below 1500 K, the equilibrium concentration of CFt is negligible compared witli (left-hand trace) the recombination is complete. At temperatures above 1500 K (right-hand trace) the equilibrium concentration of CFt is appreciable, and thus the teclmique allows the detennination of botli the equilibrium constant and the recombination rate [54, M]. This experiment resolved a famous controversy on the temperature dependence of the recombination rate of methyl radicals. Wliile standard RRKM theories [, ] predicted an increase of the high-pressure recombination rate coefficient /r (7) by a factor of 10-30 between 300 K and 1400 K, the statistical-adiabatic-chaunel model predicts a...
Because of these difficulties, special mechanisms were proposed for the 4-nitrations of 2,6-lutidine i-oxide and quinoline i-oxide, and for the nitration of the weakly basic anilines.However, recent remeasurements of the temperature coefficient of Hq, and use of the new values in the above calculations reconciles experimental and calculated activation parameters and so removes difficulties in the way of accepting the mechanisms of nitration as involving the very small equilibrium concentrations of the free bases. Despite this resolution of the difficulty some problems about these reactions do remain, especially when the very short life times of the molecules of unprotonated amines in nitration solutions are considered... [Pg.159]

Elution volume, exclusion chromatography Flow rate, column Gas/liquid volume ratio Inner column volume Interstitial (outer) volume Kovats retention indices Matrix volume Net retention volume Obstruction factor Packing uniformity factor Particle diameter Partition coefficient Partition ratio Peak asymmetry factor Peak resolution Plate height Plate number Porosity, column Pressure, column inlet Presure, column outlet Pressure drop... [Pg.83]

Depth resolution depends on the (spectrally dependent) optical absorption coefficient of the material. Near-surface analysis (first 50 nm) frequendy can be per-... [Pg.402]

The important parameters to consider are the selectivity (dKJdlogR), the ratio of pore volume, Vp, over void volume, Vq, the plate height, H, and the column length, L. The distribution coefficient, Kq, has a slight effect on resolution (with an optimum at Kp 0.3-0.5). In addition to this, extra column effects, such as sample volume, may also contribute to the resolution. [Pg.67]

Patterns of this third class in fact demonstrate a complex form of scale-invariance by their self-similarity, in the infinite time limit, different magnifications observed at the same resolution are indistinguishable. The pattern generated by rule R90, for example, matches that of the successive lines in Pascal s triangle ai t) is given by the coefficient of in the expansion of (1 - - xY modulo-tv/o (see figure 3.2). [Pg.55]

For differential equations with periodic coefficients, the theorems are the same but the calculation of the characteristic exponents meets with difficulty. Whereas in the preceding case (constant coefficients), the coefficients of the characteristic equation are known, in the present case the characteristic equation contains the unknown solutions. Thus, one finds oneself in a vicious circle to be able to determine the characteristic exponents, one must know the solutions, and in order to know the latter, one must know first these exponents. The only resolution of this difficulty is to proceed by the method of successive approximations.11... [Pg.345]

The resolution of infra-red densitometry (IR-D) is on the other hand more in the region of some micrometers even with the use of IR-microscopes. The interface is also viewed from the side (Fig. 4d) and the density profile is obtained mostly between deuterated and protonated polymers. The strength of specific IR-bands is monitored during a scan across the interface to yield a concentration profile of species. While in the initial experiments on polyethylene diffusion the resolution was of the order of 60 pm [69] it has been improved e.g. in polystyrene diffusion experiments [70] to 10 pm by the application of a Fourier transform-IR-microscope. This technique is nicely suited to measure profiles on a micrometer scale as well as interdiffusion coefficients of polymers but it is far from reaching molecular resolution. [Pg.376]

Solute retention, and consequently chromatographic resolution, is determined by the magnitude of the distribution coefficients of the solutes with respect to the stationary phase and relative to each other. As already suggested, the magnitude of the distribution coefficient is, in turn, controlled by molecular forces between the solutes and the two phases. The procedure by which the analyst can manipulate the solute/phase interactions to effect the desired resolution will also be discussed in chapter 2. [Pg.7]

The second group of studies tries to explain the solvent effects on enantioselectivity by means of the contribution of substrate solvation to the energetics of the reaction [38], For instance, a theoretical model based on the thermodynamics of substrate solvation was developed [39]. However, this model, based on the determination of the desolvated portion of the substrate transition state by molecular modeling and on the calculation of the activity coefficient by UNIFAC, gave contradictory results. In fact, it was successful in predicting solvent effects on the enantio- and prochiral selectivity of y-chymotrypsin with racemic 3-hydroxy-2-phenylpropionate and 2-substituted 1,3-propanediols [39], whereas it failed in the case of subtilisin and racemic sec-phenetyl alcohol and traws-sobrerol [40]. That substrate solvation by the solvent can contribute to enzyme enantioselectivity was also claimed in the case of subtilisin-catalyzed resolution of secondary alcohols [41]. [Pg.13]


See other pages where Resolution coefficient 30 is mentioned: [Pg.24]    [Pg.30]    [Pg.30]    [Pg.31]    [Pg.32]    [Pg.32]    [Pg.33]    [Pg.399]    [Pg.13]    [Pg.49]    [Pg.1255]    [Pg.1529]    [Pg.1699]    [Pg.600]    [Pg.198]    [Pg.138]    [Pg.531]    [Pg.312]    [Pg.480]    [Pg.390]    [Pg.19]    [Pg.111]    [Pg.221]    [Pg.330]    [Pg.580]    [Pg.603]    [Pg.378]    [Pg.208]    [Pg.88]    [Pg.29]    [Pg.340]    [Pg.13]    [Pg.87]    [Pg.584]   


SEARCH



© 2024 chempedia.info