Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistive current density

Anode characteristics For prebaked Resistivity Current density For Soderberg Resistivity Current density Electrode spacing... [Pg.374]

Electrolyte Cell Resistance Current Density Cell Voltage (V) after ... [Pg.121]

From polarization curves the protectiveness of a passive film in a certain environment can be estimated from the passive current density in figure C2.8.4 which reflects the layer s resistance to ion transport tlirough the film, and chemical dissolution of the film. It is clear that a variety of factors can influence ion transport tlirough the film, such as the film s chemical composition, stmcture, number of grain boundaries and the extent of flaws and pores. The protectiveness and stability of passive films has, for instance, been based on percolation arguments [67, 681, stmctural arguments [69], ion/defect mobility [56, 57] and charge distribution [70, 71]. [Pg.2725]

The Fe, Co, and Ni deposits are extremely fine grained at high current density and pH. Electroless nickel, cobalt, and nickel—cobalt alloy plating from fluoroborate-containing baths yields a deposit of superior corrosion resistance, low stress, and excellent hardenabiUty (114). Lead is plated alone or ia combination with tin, iadium, and antimony (115). Sound iasulators are made as lead—plastic laminates by electrolyticaHy coating Pb from a fluoroborate bath to 0.5 mm on a copper-coated nylon or polypropylene film (116) (see Insulation, acoustic). Steel plates can be simultaneously electrocoated with lead and poly(tetrafluoroethylene) (117). Solder is plated ia solutioas containing Pb(Bp4)2 and Sn(Bp4)2 thus the lustrous solder-plated object is coated with a Pb—Sn alloy (118). [Pg.168]

The means by which high current densities are obtained can be understood from an examination of the electrolyte conductivity and the interelectrode gap width. These parameters are related to the current through Ohm s law, which states that the current I fiowing in a conductor of resistance Ris directly proportional to the appHed voltage IN... [Pg.306]

Piebaked anodes aie produced by molding petroleum coke and coal tar pitch binder into blocks typically 70 cm x 125 cm x 50 cm, and baking to 1000—1200°C. Petroleum coke is used because of its low impurity (ash) content. The more noble impurities, such as iron and siUcon, deposit in the aluminum whereas less noble ones such as calcium and magnesium, accumulate as fluorides in the bath. Coal-based coke could be used, but extensive and expensive prepurification would be required. Steel stubs seated in the anode using cast iron support the anodes (via anode rods) in the electrolyte and conduct electric current into the anodes (Fig. 3). Electrical resistivity of prebaked anodes ranges from 5-6 Hm anode current density ranges from 0.65 to 1.3 A/crn. ... [Pg.98]

Hard plating is noted for its excellent hardness, wear resistance, and low coefficient of friction. Decorative plating retains its brilliance because air exposure immediately forms a thin, invisible protective oxide film. The chromium is not appHed directiy to the surface of the base metal but rather over a nickel (see Nickel and nickel alloys) plate, which in turn is laid over a copper (qv) plate. Because the chromium plate is not free of cracks, pores, and similar imperfections, the intermediate nickel layer must provide the basic protection. Indeed, optimum performance is obtained when a controlled but high density (40—80 microcrack intersections per linear millimeter) of microcracks is achieved in the chromium lea ding to reduced local galvanic current density at the imperfections and increased cathode polarization. A duplex nickel layer containing small amounts of sulfur is generally used. In addition to... [Pg.119]

The exchange current density, depends on temperature, the composition of the electrolyte adjacent to the electrode, and the electrode material. The exchange current density is a measure of the kinetic resistance. High values of correspond to fast or reversible kinetics. The three parameters, a, a. ... [Pg.64]

The reaction mixture is filtered. The soHds containing K MnO are leached, filtered, and the filtrate composition adjusted for electrolysis. The soHds are gangue. The Cams Chemical Co. electrolyzes a solution containing 120—150 g/L KOH and 50—60 g/L K MnO. The cells are bipolar (68). The anode side is monel and the cathode mild steel. The cathode consists of small protmsions from the bipolar unit. The base of the cathode is coated with a corrosion-resistant plastic such that the ratio of active cathode area to anode area is about 1 to 140. Cells operate at 1.2—1.4 kA. Anode and cathode current densities are about 85—100 A/m and 13—15 kA/m, respectively. The small cathode areas and large anode areas are used to minimize the reduction of permanganate at the cathode (69). Potassium permanganate is continuously crystallized from cell Hquors. The caustic mother Hquors are evaporated and returned to the cell feed preparation system. [Pg.78]

Tertiay Current Distribution. The current distribution is again impacted when the overpotential influence is that of concentration. As the limiting current density takes effect, this impact occurs. The result is that the higher current density is distorted toward the entrance of the cell. Because of the nonuniform electrolyte resistance, secondary and tertiary current distribution are further compHcated when there is gas evolution along the cell track. Examples of iavestigations ia this area are available (50—52). [Pg.88]

A problem that affects the accuracy of the prediction of plating thickness is in estimating the actual current density. Current is not evenly distributed over the surface of the part being plated, rather, it takes the path of least resistance. Current also concentrates on sharper points, corners, and edges even the shape of the plating tank can have an influence on the current distribution. The difference in current and, subsequendy, the plate thickness distribution, is minimal when geometrically conforming anodes are part of the system, but this condition is not often achieved. [Pg.145]

Polarization. When the appHed current density equals the AX membrane and the apparatus are said to be concentration polarized or simply polarized. At the fluid at the surface of the membrane is essentially depleted of electrolyte and the electrical resistance of the apparatus iacreases... [Pg.174]

Polarization probes rely on the relationship of the applied potential to the output current per unit area (current density). The slope of applied potential versus current density extrapolated through the origin, yields the polarization resistance Rp, which can be related to the corrosion rate. [Pg.2440]

ASTM G59, Standard Prac tice for Conducting Potentiodynamic Polarization Resistance Measurements, provides instructions for the graphical plotting of data (from tests conducted using the above-noted ASTM Standard G103) as the hnear potential versus current density, from which the polarization resistance can be found. [Pg.2441]

The potential dependence of the velocity of an electrochemical phase boundary reaction is represented by a current-potential curve I(U). It is convenient to relate such curves to the geometric electrode surface area S, i.e., to present them as current-density-potential curves J(U). The determination of such curves is represented schematically in Fig. 2-3. A current is conducted to the counterelectrode Ej in the electrolyte by means of an external circuit (voltage source Uq, ammeter, resistances R and R") and via the electrode E, to be measured, back to the external circuit. In the diagram, the current indicated (0) is positive. The potential of E, is measured with a high-resistance voltmeter as the voltage difference of electrodes El and E2. To accomplish this, the reference electrode, E2, must be equipped with a Haber-Luggin capillary whose probe end must be brought as close as possible to... [Pg.40]

In analyzing the results on a cathodically protected pipeline, the protection current density and coating resistances should be calculated for individual sections of the pipeline in addition to the on and off potentials, the pipe current, and the resistances at insulating points and between the casing and the pipeline. The results should be shown by potential plots to give a good summary [15] (see Fig. 3-20). [Pg.100]

Fig. 3-13 Determination of the protection current density and coating resistance of a pipeline (explanation in the text). Fig. 3-13 Determination of the protection current density and coating resistance of a pipeline (explanation in the text).
The variation in the on and off potentials or the potential difference along the pipeline will usually indicate faults that prevent the attainment of complete cathodic protection. The protection current requirement of the pipeline may be estimated from experience if the age and type of pipeline is known (see Fig. 5-3). Figure 3-20 shows the variation in the on and off potentials of a 9-km pipeline section DN 800 with 10-mm wall thickness. At the end of the pipeline, at 31.84 km, an insulating unit is built in. The cathodic protection station is situated at 22.99 km. Between this and the end of the pipeline there are four pipe current measuring points. The applied protection current densities and coating resistances of individual pipeline sections are calculated from Eqs. (3-40) and (3-41). In the upper diagram the values of... [Pg.119]


See other pages where Resistive current density is mentioned: [Pg.61]    [Pg.64]    [Pg.61]    [Pg.64]    [Pg.142]    [Pg.37]    [Pg.484]    [Pg.16]    [Pg.425]    [Pg.6]    [Pg.520]    [Pg.176]    [Pg.98]    [Pg.331]    [Pg.518]    [Pg.362]    [Pg.366]    [Pg.366]    [Pg.486]    [Pg.76]    [Pg.87]    [Pg.90]    [Pg.145]    [Pg.156]    [Pg.165]    [Pg.2410]    [Pg.713]    [Pg.15]    [Pg.51]    [Pg.65]    [Pg.110]    [Pg.110]    [Pg.110]    [Pg.112]    [Pg.120]   
See also in sourсe #XX -- [ Pg.2 , Pg.20 ]




SEARCH



Current Density and Coating Resistance

Determination of the Exchange Current Density from Polarization Resistance

Limiting current density resistive

Measurement of Current Density and Coating Resistance

Polarization resistance cathodic current density calculation

Polarization resistance exchange current density

© 2024 chempedia.info