Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resins surface area

Viscosity aging behavior has been shown to be dependent on exposed resin surface area and agglomerate fusion.Higher dryer temperatures will decrease the former and increase the latter, resulting in better viscosity aging stability. [Pg.224]

The final resin bead structure of a macroreticular resin contains many hard microspheres interspersed with pores and channels. Because each resin bead is really made up of thousands of smaller beads (something like a popcorn ball), the surface area of macroporous resins is much higher than that of microporous resins. A gel resin has a (calculated) surface area of less than 1 m g". However, macroporous resin surface areas range from 25 to as much as 800 m g". ... [Pg.40]

Stabilization of the Cellular State. The increase in surface area corresponding to the formation of many ceUs in the plastic phase is accompanied by an increase in the free energy of the system hence the foamed state is inherently unstable. Methods of stabilizing this foamed state can be classified as chemical, eg, the polymerization of a fluid resin into a three-dimensional thermoset polymer, or physical, eg, the cooling of an expanded thermoplastic polymer to a temperature below its second-order transition temperature or its crystalline melting point to prevent polymer flow. [Pg.404]

Optimum resin decoloration and overall catalyst life were achieved using a catalyst with a specific fresh surface area of 181 ni2/g (64). [Pg.355]

Particle board and wood chip products have evolved from efforts to make profitable use of the large volumes of sawdust generated aimually. These products are used for floor undedayment and decorative laminates. Most particle board had been produced with urea—formaldehyde adhesive for interior use resin demand per board is high due to the high surface area requiring bonding. Nevertheless, substantial quantities of phenol—formaldehyde-bonded particle board are produced for water-resistant and low formaldehyde appHcations. [Pg.306]

Other Measurements. Other tests include free moisture content, rate of dissolution and undissolved residue in acids and alkaH, resin and plasticizer absorption, suspension viscosity, and specific surface area. Test procedures for these properties are developed to satisfy appHcation-related specifications. [Pg.172]

Synthetic polymeric adsorbents have a high porosity, large surface area, and an inert hydrophobic surface. These resins can be regenerated ... [Pg.227]

Color Concentrates. Color concentrates have become the method of choice to incorporate colorants into resins. Color concentrates have high ratios of colorant to a compatible vehicle. The colorant may be added at 70% colorant to 30% vehicle in a titanium dioxide mixture whereas the ratio may be 15% colorant to 85% vehicle in a carbon black mixture. The amount of colorant that can be added is dependent on the surface area and the oil absorption of the colorant and the wetting abiHty of the vehicle. The normal goal is to get as much colorant in the concentrate as possible to obtain the greatest money value for the product. Furthermore, less added vehicle minimizes the effect on the physical or chemical properties of the resin system. [Pg.456]

The esterification of -butyl alcohol and oleic acid with a phenol—formaldehydesulfonic acid resin (similar to amberHte IR-100) is essentially second order after an initial slow period (52). The velocity constant is directiy proportional to the surface area of the catalyst per unit weight of reactants. [Pg.376]

Polymer-based, synthetic ion-exchangers known as resins are available commercially in gel type or truly porous forms. Gel-type resins are not porous in the usual sense of the word, since their structure depends upon swelhng in the solvent in which they are immersed. Removal of the solvent usually results in a collapse of the three-dimensional structure, and no significant surface area or pore diameter can be defined by the ordinaiy techniques available for truly porous materials. In their swollen state, gel-type resins approximate a true molecular-scale solution. Thus, we can identify an internal porosity p only in terms of the equilibrium uptake of water or other liquid. When crosslinked polymers are used as the support matrix, the internal porosity so defined varies in inverse proportion to the degree of crosslinkiug, with swelhng and therefore porosity typically being more... [Pg.1500]

Truly porous, synthetic ion exchangers are also available. These materials retain their porosity even after removal of the solvent and have measurable surface areas and pore size. The term macroreticular is commonly used for resins prepared from a phase separation technique, where the polymer matrix is prepared with the addition of a hq-uid that is a good solvent for the monomers, but in which the polymer is insoluble. Matrices prepared in this way usually have the appearance of a conglomerate of gel-type microspheres held together to... [Pg.1500]

Assuming that the gluing of particles of different sizes is performed randomly with their surface area as decisive parameter, for various homogeneous particle size fractions and for different particle size mixtures, the theoretical mass gluing factors and the distribution of the resin solid content can be calculated. [Pg.1086]

In addition to the surface area of the particles, several other parameters have some influence on the necessary resin consumption, e.g. the type of the boards, thickness of the sanding zone, type and capacity of the blenders, separation and spraying of the glue resin (only wiping effect or spraying of the resin by air or liquid pressure), shape of the panicles for the same particle sizes, dependence of... [Pg.1086]

The metal electrode to be studied must be carefully prepared, attached to an electrical lead and mounted so that a known surface area of one face is presented to the solution. Several procedures are used such as mounting in a cold setting resin (Araldite) or inserting into a close-fitting holder of p.t.f.e. In the case of metal-solution systems that have a propensity for pitting care must be taken to avoid a crevice at the interface between metal specimen and the mounting material, and this can be achieved effectively by mounting the... [Pg.1008]

Highly active catalysts have been produced by adsorption of lipases onto macroporous acrylate beads, polypropylene particles and phenol-formaldehyde weak anion exchange resins. Protein is bound, presumably essentially as a monolayer, within the pores of the particles. The large surface area of the particles (10m2 g 1) means that substantial amounts of protein can be adsorbed, and the pores are of sufficient size to allow easy access of reactants to this adsorbed protein. [Pg.331]

Sodium dodecyl sulfate micelle 71,72,77,79 Spin label 139 Starch 100, 104 —, crosslinked 106 —, graft polymers 105, 107, 125, 127 Styrene 160—162 Styrene-divinylbenzene resins 167 Styrenesulfonic acid, copolymers 74—76 Surface area 147... [Pg.181]

Adsorption beds of activated carbon for the purification of citric acid, and adsorption of organic chemicals by charcoal or porous polymers, are good examples of ion-exchange adsorption systems. Synthetic resins such as styrene, divinylbenzene, acrylamide polymers activated carbon are porous media with total surface area of 450-1800 m2-g h There are a few well-known adsorption systems such as isothermal adsorption systems. The best known adsorption model is Langmuir isotherm adsorption. [Pg.185]


See other pages where Resins surface area is mentioned: [Pg.294]    [Pg.36]    [Pg.168]    [Pg.176]    [Pg.383]    [Pg.294]    [Pg.36]    [Pg.168]    [Pg.176]    [Pg.383]    [Pg.369]    [Pg.379]    [Pg.160]    [Pg.334]    [Pg.146]    [Pg.231]    [Pg.309]    [Pg.143]    [Pg.322]    [Pg.365]    [Pg.493]    [Pg.194]    [Pg.493]    [Pg.376]    [Pg.100]    [Pg.184]    [Pg.589]    [Pg.635]    [Pg.1045]    [Pg.1085]    [Pg.1085]    [Pg.1086]    [Pg.116]    [Pg.345]    [Pg.3]    [Pg.277]    [Pg.255]    [Pg.277]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



© 2024 chempedia.info