Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin matrices mechanical properties

Mechanical properties are only slowly influenced by weathering. The most noticeable change occurs in flame-resistant polyester resins. The mechanical properties of glass fiber-reinforced polyester resins during weathering are decisively influenced by fiber-matrix adhesion, so that surface treatment of the glass fibers can improve weathering behavior [32],... [Pg.535]

Mechanical Properties. Properties of typical grades of PBT, either as unfiUed neat resin, glass-fiber fiUed, and FR-grades, are set out in Table 8. This table also includes impact-modified grades which incorporate dispersions of elastomeric particles inside the semicrystalHne polyester matrix. These dispersions act as effective toughening agents which greatly improve impact properties. The mechanisms are not fiiUy understood in all cases. The subject has been discussed in detail (171) and the particular case of impact-modified polyesters such as PBT has also been discussed (172,173). [Pg.300]

Thermosetting unsaturated polyester resins constitute the most common fiber-reinforced composite matrix today. According to the Committee on Resin Statistics of the Society of Plastics Industry (SPl), 454,000 t of unsaturated polyester were used in fiber-reinforced plastics in 1990. These materials are popular because of thek low price, ease of use, and excellent mechanical and chemical resistance properties. Over 227 t of phenoHc resins were used in fiber-reinforced plastics in 1990 (1 3). PhenoHc resins (qv) are used when thek inherent flame retardance, high temperature resistance, or low cost overcome the problems of processing difficulties and lower mechanical properties. [Pg.18]

All VGCF was graphitized prior to composite consolidation. Composites were molded in steel molds lined with fiberglass reinforced, non-porous Teflon release sheets. The finished composite panels were trimmed of resin flash and weighed to determine the fiber fraction. Thermal conductivity and thermal expansion measurements of the various polymer matrix composites are given in Table 6. Table 7 gives results from mechanical property measurements. [Pg.151]

An EB-curable struetural adhesive formulation usually eonsists of one or more crosslinkable oligomeric resins or prepolymers, along with such additives as reactive diluents, plasticizers, and wetting agents. The oligomer is an important component in terms of the development of mechanical properties. The adhesive and cohesive properties depend on the crosslink density, chemical group substitution, and molecular organization within the polymer matrix. Adhesion is achieved... [Pg.1012]

The mechanical properties of composites reinforced with wood fibers and PVC or PS as resin can be improved by an isocyanate treatment of those cellulose fibers [41,50] or the polymer matrix [50]. Polymethylene-polyphenyl-isocianate (PMPPIC) in pure state or solution in plasticizer can be used. PMPPIC is chemically linked to the cellulose matrix through strong covalent bonds (Fig. 8). [Pg.797]

In one series of laboratory tests carried out to find the optimum wear resistance of heavy-duty epoxy resin flooring compositions, a number of different abrasion resistant materials were evaluated using BS 416, employing three different epoxy resin binders which themselves had significantly differing chemical compositions and mechanical properties. The results of this work, which was carried out under dry conditions, are given in Table 9.1. As can be seen from the table, the selection of the abrasion-resistant material and the resin matrix both influence the abrasion resistance of the system, although the abrasive material incorporated appears to play a more cmcial role. [Pg.105]

The mechanical properties of plastics materials may often be considerably enhanced by embedding fibrous materials in the polymer matrix. Whilst such techniques have been applied to thermoplastics the greatest developents have taken place with the thermosetting plastics. The most common reinforcing materials are glass and cotton fibres but many other materials ranging from paper to carbon fibre are used. The fibres normally have moduli of elasticity substantially greater than shown by the resin so that under tensile stress much of the load is borne by the fibre. The modulus of the composite is intermediate to that of the fibre and that of the resin. [Pg.921]

The situation is more complex when various other ingredients are added to PBT. Glass fibers, for instance, may lose adhesion from the resin due to the action of water on the glass-PBT interface, independent of the PBT-matrix reaction. This action will depend on specific contact conditions such as time, temperature and pH. In some instances, fiber-to-matrix adhesion can be recovered when the sample is dried, resulting in the recovery of some mechanical properties (if the PBT matrix is not too severely degraded). Other additives can introduce additional complications. [Pg.316]

One typical example of carbon/carbon composite plates is that made by Oak Ridge National Laboratory (ORNL) in the United States [12]. The composite preform was fabricafed by a slurry-molding process from fhe mixed slurry befween short carbon fibers (graphite fibers were also added in some sample plates) and fhe phenolic resin. The mass rafio between fiber reinforcement and phenolic matrix is 4 3. The phenolic matrix improves the mechanical properties and dimensional stability of the plate. A subsequent vacuum molding process was utilized to fabricate composite plates and fluid fields with relatively high resolution (Figure 5.3, [11]). [Pg.317]

In addition to the amount of filler content, the shape, size and size distribution, surface wettability, interface bonding, and compatibility with the matrix resin of the filler can all influence electrical conductivity, mechanical properties, and other performance characteristics of the composite plates. As mentioned previously, to achieve higher electrical conductivity, the conductive graphite or carbon fillers must form an interconnected or percolated network in the dielectrical matrix like that in GrafTech plates. The interface bonding and compatibility between... [Pg.324]


See other pages where Resin matrices mechanical properties is mentioned: [Pg.6]    [Pg.789]    [Pg.76]    [Pg.307]    [Pg.593]    [Pg.21]    [Pg.21]    [Pg.533]    [Pg.322]    [Pg.8]    [Pg.1017]    [Pg.1158]    [Pg.577]    [Pg.802]    [Pg.819]    [Pg.821]    [Pg.835]    [Pg.168]    [Pg.190]    [Pg.36]    [Pg.60]    [Pg.372]    [Pg.9]    [Pg.5]    [Pg.459]    [Pg.205]    [Pg.125]    [Pg.314]    [Pg.552]    [Pg.554]    [Pg.556]    [Pg.558]    [Pg.18]    [Pg.19]    [Pg.320]    [Pg.154]    [Pg.280]   
See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Matrix mechanical properties

Matrix mechanics

Matrix mechanisms

Matrix properties

Matrix resin properties

Mechanical properties resins

Resin matrix

Resins, properties

© 2024 chempedia.info