Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Residence plug-flow

Solution We wish to avoid as much as possible the production of di- and triethanolamine, which are formed by series reactions with respect to monoethanolamine. In a continuous well-mixed reactor, part of the monoethanolamine formed in the primary reaction could stay for extended periods, thus increasing its chances of being converted to di- and triethanolamine. The ideal batch or plug-flow arrangement is preferred, to carefully control the residence time in the reactor. [Pg.50]

Because the characteristic of tubular reactors approximates plug-flow, they are used if careful control of residence time is important, as in the case where there are multiple reactions in series. High surface area to volume ratios are possible, which is an advantage if high rates of heat transfer are required. It is sometimes possible to approach isothermal conditions or a predetermined temperature profile by careful design of the heat transfer arrangements. [Pg.54]

Wet Oxidation Reactor Design. Several types of reactor designs have been employed for wet oxidation processes. Zimpro, the largest manufacturer of wet oxidation systems, typically uses a tower reactor system. The reactor is a bubble tower where air is introduced at the bottom to achieve plug flow with controlled back-mixing. Residence time is typically under one hour. A horizontal, stirred tank reactor system, known as the Wetox process, was initially developed by Barber-Cohnan, and is also offered by Zimpro. [Pg.502]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Fig. 8. Combined flow reactor models (a) parallel flow reactors with longitudinal diffusion (diffusivities can differ), (b) internal recycle—cross-flow reactor (the recycle can be in either direction), comprising two countercurrent plug-flow reactors with intercormecting distributed flows, (c) plug-flow and weU-mixed reactors in series, and (d) 2ero-interniixing model, in which plug-flow reactors are parallel and a distribution of residence times dupHcates that... Fig. 8. Combined flow reactor models (a) parallel flow reactors with longitudinal diffusion (diffusivities can differ), (b) internal recycle—cross-flow reactor (the recycle can be in either direction), comprising two countercurrent plug-flow reactors with intercormecting distributed flows, (c) plug-flow and weU-mixed reactors in series, and (d) 2ero-interniixing model, in which plug-flow reactors are parallel and a distribution of residence times dupHcates that...
Fig. 8. Theoretical residence time distributions A, combustor style approach to plug flow B, turbulent bed (100% backmixed). Fig. 8. Theoretical residence time distributions A, combustor style approach to plug flow B, turbulent bed (100% backmixed).
A model of a reaction process is a set of data and equations that is believed to represent the performance of a specific vessel configuration (mixed, plug flow, laminar, dispersed, and so on). The equations include the stoichiometric relations, rate equations, heat and material balances, and auxihaiy relations such as those of mass transfer, pressure variation, contac ting efficiency, residence time distribution, and so on. The data describe physical and thermodynamic properties and, in the ultimate analysis, economic factors. [Pg.2070]

The distribution of residence times of reactants or tracers in a flow vessel, the RTD, is a key datum for determining reactor performance, either the expected conversion or the range in which the conversion must fall. In this section it is shown how tracer tests may be used to estabhsh how nearly a particular vessel approaches some standard ideal behavior, or what its efficiency is. The most useful comparisons are with complete mixing and with plug flow. A glossary of special terms is given in Table 23-3, and major relations of tracer response functions are shown in Table 23-4. [Pg.2081]

One quantitative measure of reactor efficiency at a conversion level x is the ratio of the mean residence time or the reactor volume in a plug flow reactor to that of the reactor in question,... [Pg.2081]

Plug flow A condition in which all effluent molecules have had the same residence time. [Pg.2082]

FIG. 23-7 Imp ulse and step inputs and responses. Typical, PFR and CSTR. (a) Experiment with impulse input of tracer, (h) Typical behavior area between ordinates at tg and ty equals the fraction of the tracer with residence time in that range, (c) Plug flow behavior all molecules have the same residence time, (d) Completely mixed vessel residence times range between zero and infinity, e) Experiment with step input of tracer initial concentration zero. (/) Typical behavior fraction with ages between and ty equals the difference between the ordinates, h — a. (g) Plug flow behavior zero response until t =t has elapsed, then constant concentration Cy. (h) Completely mixed behavior response begins at once, and ultimately reaches feed concentration. [Pg.2084]

Topics that acquire special importance on the industrial scale are the quality of mixing in tanks and the residence time distribution in vessels where plug flow may be the goal. The information about agitation in tanks described for gas/liquid and slurry reactions is largely apphcable here. The relation between heat transfer and agitation also is discussed elsewhere in this Handbook. Residence time distribution is covered at length under Reactor Efficiency. A special case is that of laminar and related flow distributions characteristic of non-Newtonian fluids, which often occiu s in polymerization reactors. [Pg.2098]

In the holding section of a continuous sterilizer, correct exposure time and temperature must be maintained. Because of the distribution of residence times, the actual reduction of microbial contaminants in the holding section is significantly lower than that predicted from plug flow assumption. The difference between actual and predicted reduction in viable microorganisms can be several orders of magnitude therefore, a design based on ideal flow conditions may fail. [Pg.2142]

Space time ST is equal to the residence time in a plug flow reactor only if the volumetric flowrate remains constant throughout the reactor. The residence time depends on the change in the flowrate through the reactor, as well as V/u. The change in u depends on the variation in temperature, pressure, and the number of moles. The concept of SV with conversions in the design of a plug flow reactor is discussed later in this chapter. [Pg.351]

Fig ure 5-36. Residence time in CFSTR and plug flow reactors from versus C q plot. [Pg.397]

Figure 5-37. Residence time from l/i-r ) versus C q foi" Plug flow... Figure 5-37. Residence time from l/i-r ) versus C q foi" Plug flow...
The distribution of tracer molecule residence times in the reactor is the result of molecular diffusion and turbulent mixing if tlie Reynolds number exceeds a critical value. Additionally, a non-uniform velocity profile causes different portions of the tracer to move at different rates, and this results in a spreading of the measured response at the reactor outlet. The dispersion coefficient D (m /sec) represents this result in the tracer cloud. Therefore, a large D indicates a rapid spreading of the tracer curve, a small D indicates slow spreading, and D = 0 means no spreading (hence, plug flow). [Pg.725]

A practical method of predicting the molecular behavior within the flow system involves the RTD. A common experiment to test nonuniformities is the stimulus response experiment. A typical stimulus is a step-change in the concentration of some tracer material. The step-response is an instantaneous jump of a concentration to some new value, which is then maintained for an indefinite period. The tracer should be detectable and must not change or decompose as it passes through the mixer. Studies have shown that the flow characteristics of static mixers approach those of an ideal plug flow system. Figures 8-41 and 8-42, respectively, indicate the exit residence time distributions of the Kenics static mixer in comparison with other flow systems. [Pg.748]

An ideal plug flow reactor, for example, has no spread in residence time because the fluid flows like a plug through the reactor (Westerterp etal., 1995). For an ideal continuously stirred reactor, however, the RTD function becomes a decaying exponential function with a wide spread of possible residence times for the fluid elements. [Pg.49]

The residence time for an ideal plug flow system is stipulated as ... [Pg.38]

The liquid residence-time distribution is close to plug flow in trickle-flow operation and corresponds to perfect mixing in the stirred-slurry operation, whereas the other types of bubble-flow operation are characterized by residence-time distributions between these extremes. [Pg.131]

Reaction temperature in short residence time reactor 90°C, cooling water — 80-85°C in lower part and 40-50°C in upper part Aging reactor post-falling film reactor required residence time 0.5 h at 90-95°C, plug flow conditions... [Pg.666]


See other pages where Residence plug-flow is mentioned: [Pg.29]    [Pg.31]    [Pg.34]    [Pg.34]    [Pg.34]    [Pg.55]    [Pg.510]    [Pg.512]    [Pg.269]    [Pg.248]    [Pg.251]    [Pg.699]    [Pg.1652]    [Pg.1892]    [Pg.1905]    [Pg.2087]    [Pg.2099]    [Pg.2099]    [Pg.2117]    [Pg.29]    [Pg.264]    [Pg.411]    [Pg.748]    [Pg.1085]    [Pg.96]    [Pg.316]    [Pg.380]   
See also in sourсe #XX -- [ Pg.614 ]




SEARCH



Plug flow

Plug flow reactor residence time

Plug flow reactors residence time distribution

Plug flow, mixing model residence-time distribution

Plug flow, reactor model residence time

© 2024 chempedia.info