Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reservoirs variations

Variability in the Amount of Carbon in Reservoirs. In addition to variations in the production and distribution of radiocarbon over time and within portions of various carbon reservoirs, variations may result in situations where carbon not in equilibrium with the contemporary standard values is added or removed from any reservoir. Two instances of this are well documented since they occurred within the last century as a result of human intervention. The first is known as the industrial or Suess effect and is caused by the combustion of fossil fuels beginning about 1890, resulting in a depletion of atmospheric activities by about 3% (76). A more recent occurrence has been called the atomic bomb or Libby effect. The detonation of nuclear devices in the atmosphere beginning in 1945 produced large amounts of artificial increasing the radiocarbon concentrations in the atmosphere by more than 100% in the Northern Hemisphere (77). Because of equilibration with the oceans, the levels have been diminishing steadily since the atmospheric testing was terminated by the major nuclear powers except France and the People s Repub-... [Pg.53]

This research uses observations of reservoir induced seismicity (RIS) at A u reservoir. NE Brazil, to investigate the spatial and temporal evolution of effective stress in the region and its relationship to fault permeability. A u reservoir was constructed in 1983 and has a capacity of 2.4 x lO m maintained by a 34 m high earth-filled dam constructed on Precambrian shield. Annual reservoir variation is 3-6 m which results in annual seismic activity due to a proposed mechanism of pore pressure diffusion (Ferreira et al. (1995), do Nascimento et al. (2003a)). Digital data at A u... [Pg.617]

Within the same reservoir, we also observe variations of specific gravity from one well to another for example, 0.848 (38.4° API) and 0.861 (32.8° API) in the Ghawar field. [Pg.316]

Introduction and Commercial Application The objective of reservoir geology is the description and quantification of geologically controlled reservoir parameters and the prediction of their lateral variation. Three parameters broadly define the reservoir geology of a field ... [Pg.76]

As will be shown in the next section, the methods discussed so far do not take account of the uncertainties and lateral variations in reservoir parameters. Hence the accuracy of the results is not adequate for decision making. The next section introduces a more comprehensive approach to volumetric estimation. [Pg.158]

Reservoir engineers describe the relationship between the volume of fluids produced, the compressibility of the fluids and the reservoir pressure using material balance techniques. This approach treats the reservoir system like a tank, filled with oil, water, gas, and reservoir rock in the appropriate volumes, but without regard to the distribution of the fluids (i.e. the detailed movement of fluids inside the system). Material balance uses the PVT properties of the fluids described in Section 5.2.6, and accounts for the variations of fluid properties with pressure. The technique is firstly useful in predicting how reservoir pressure will respond to production. Secondly, material balance can be used to reduce uncertainty in volumetries by measuring reservoir pressure and cumulative production during the producing phase of the field life. An example of the simplest material balance equation for an oil reservoir above the bubble point will be shown In the next section. [Pg.185]

Well completions are usually tailored to individual wells, and many variations exist. The following diagrams show a completion with a gravel pack, designed to exclude sand production downhole, and a dual completion, designed to allow controlled production from two separate reservoirs. [Pg.228]

Fluid samples will be taken using downhole sample bombs or the MDT tool in selected development wells to confirm the PVT properties assumed in the development plan, and to check for areal and vertical variations in the reservoir. In long hydrocarbon columns (say 1000 ft) it is common to observe vertical variation of fluid properties due to gravity segregation. [Pg.333]

The recycle weapons fuel cycle rehes on the reservoir of SWUs and yellow cake equivalents represented by the fissile materials in decommissioned nuclear weapons. This variation impacts the prereactor portion of the fuel cycle. The post-reactor portion can be either classical or throwaway. Because the avadabihty of weapons-grade fissile material for use as an energy source is a relatively recent phenomenon, it has not been fully implemented. As of early 1995 the United States had purchased highly enriched uranium from Russia, and France had initiated a modification and expansion of the breeder program to use plutonium as the primary fuel (3). AH U.S. reactor manufacturers were working on designs to use weapons-grade plutonium as fuel. [Pg.202]

The Cannon-Fenske viscometer (Fig. 24b) is excellent for general use. A long capillary and small upper reservoir result in a small kinetic energy correction the large diameter of the lower reservoir minimises head errors. Because the upper and lower bulbs He on the same vertical axis, variations in the head are minimal even if the viscometer is used in positions that are not perfecdy vertical. A reverse-flow Cannon-Fen ske viscometer is used for opaque hquids. In this type of viscometer the Hquid flows upward past the timing marks, rather than downward as in the normal direct-flow instmment. Thus the position of the meniscus is not obscured by the film of Hquid on the glass wall. [Pg.181]

Using combustion to stimulate bitumen production is attractive for deep reservoirs and in contrast to steam injection usually involves no loss of heat. The duration of the combustion may be short (days) depending on requirements. In addition, backflow of oil through the hot 2one must be prevented or excessive coking occurs (15,16). Another variation of the combustion process involves use of a heat-up phase, then a blow-down (production) phase, followed by a displacement phase using a fire-water flood (COFCAW process). [Pg.357]

Equalizing basin A holding basin in which variations in flow and composition of liquid are averaged. Such basins are used to provide a flow of reasonably uniform volume and composition to a treatment unit. Also called a balancing reservoir. Estuaries Bodies of water which are located at the lower end of a river and are subject to tidal fluctuations. [Pg.613]

Budgets and cycles can be considered on very different spatial scales. In this book we concentrate on global, hemispheric and regional scales. The choice of a suitable scale (i.e. the size of the reservoirs), is determined by the goals of the analysis as well as by the homogeneity of the spatial distribution. For example, in carbon cycle models it is reasonable to consider the atmosphere as one reservoir (the concentration of CO2 in the atmosphere is fairly uniform). On the other hand, oceanic carbon content and carbon exchange processes exhibit large spatial variations and it is reasonable to separate the... [Pg.10]

If all fluxes are proportional to the reservoir contents, the percentage change in reservoir content will be equal for all the reservoirs. The non-linear relations discussed above give rise to substantial variations between the reservoirs. Note that the atmospheric reservoir is much more significantly perturbed than any of the other three reservoirs. Even in the case with a 6000 Pg input, the carbon content of the oceans does not increase by more than 12% at steady state. [Pg.73]

The most abundant isotope is which constitutes almost 99% of the carbon in nature. About 1% of the carbon atoms are There are, however, small but significant differences in the relative abundance of the carbon isotopes in different carbon reservoirs. The differences in isotopic composition have proven to be an important tool when estimating exchange rates between the reservoirs. Isotopic variations are caused by fractionation processes (discussed below) and, for C, radioactive decay. Formation of takes place only in the upper atmosphere where neutrons generated by cosmic radiation react with nitrogen ... [Pg.284]

The content of the material in a carbon reservoir is a measure of that reservoir s direct or indirect exchange rate with the atmosphere, although variations in solar also create variations in atmospheric content activity (Stuiver and Quay, 1980, 1981). Geologically important reservoirs (i.e., carbonate rocks and fossil carbon) contain no radiocarbon because the turnover times of these reservoirs are much longer than the isotope s half-life. The distribution of is used in studies of ocean circulation, soil sciences, and studies of the terrestrial biosphere. [Pg.284]

Sarntheim, M., Winn, K., Duplessey, J.-C. and Fontugne, M.R. 1988 Global variations of surface ocean primary productivity in low and mid latitudes influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3 361-399. [Pg.114]


See other pages where Reservoirs variations is mentioned: [Pg.216]    [Pg.237]    [Pg.221]    [Pg.644]    [Pg.1010]    [Pg.216]    [Pg.237]    [Pg.221]    [Pg.644]    [Pg.1010]    [Pg.23]    [Pg.50]    [Pg.136]    [Pg.226]    [Pg.198]    [Pg.98]    [Pg.397]    [Pg.269]    [Pg.181]    [Pg.377]    [Pg.890]    [Pg.483]    [Pg.369]    [Pg.214]    [Pg.918]    [Pg.919]    [Pg.920]    [Pg.922]    [Pg.117]    [Pg.393]    [Pg.62]    [Pg.107]    [Pg.113]    [Pg.284]    [Pg.308]    [Pg.373]    [Pg.207]    [Pg.126]    [Pg.508]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



© 2024 chempedia.info