Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dual completion

Well completions are usually tailored to individual wells, and many variations exist. The following diagrams show a completion with a gravel pack, designed to exclude sand production downhole, and a dual completion, designed to allow controlled production from two separate reservoirs. [Pg.228]

Figure 9.15 Gravel pack completion and dual completion... Figure 9.15 Gravel pack completion and dual completion...
Fiber stmcture is a dual or a balanced stmcture. Neither a completely amorphous stmcture nor a perfectly crystalline stmcture provides the balance of physical properties required in fibers. The formation and processing of fibers is designed to provide an optimal balance in terms of both stmcture and properties. Excellent discussions of the stmcture of fiber-forming polymers and general methods of the stmcture characterization are available (28—31). [Pg.272]

Some fabrication processes, such as continuous panel processes, are mn at elevated temperatures to improve productivity. Dual-catalyst systems are commonly used to initiate a controlled rapid gel and then a fast cure to complete the cross-linking reaction. Cumene hydroperoxide initiated at 50°C with benzyl trimethyl ammonium hydroxide and copper naphthenate in combination with tert-huty octoate are preferred for panel products. Other heat-initiated catalysts, such as lauroyl peroxide and tert-huty perbenzoate, are optional systems. Eor higher temperature mol ding processes such as pultmsion or matched metal die mol ding at temperatures of 150°C, dual-catalyst systems are usually employed based on /-butyl perbenzoate and 2,5-dimethyl-2,5-di-2-ethyIhexanoylperoxy-hexane (Table 6). [Pg.318]

In these processes, the starch slurry is prepared in the same manner as in the low temperature process. In a dual-enzyme/dual-heating process, the steps ate the same as the low temperature process until the completion of the second-stage reaction. Then, a 2—5-min heat treatment foUowed by a second enzyme addition and another reaction step is employed. In a dual-enzyme/single-heating process, the starch slurry is immediately heated to 145—150°C for one minute or less. Although the enzyme is rapidly inactivated, sufficient hydrolysis takes place to provide a partially thinned hydrolyzate that can be pumped to a second stage where additional enzyme is added and the reaction continued at 95—100°C for 20—30 minutes. The temperature is then lowered for the remainder of the reaction. [Pg.290]

Howe er, most conventional pump impellers receive the fluid into the impeller eye, at the center or inside diameter of the impeller. There are single suction impellers, and dual or double suction impellers with two eyes, one on each side. Dual suction impellers are mostly specified for low NPSH applications because the eye area is doubled (it ean reeeive twice as much fluid at a lower velocity head). Dual suction impellers arc mostly found on split case pumps where the shaft passes completely through the impeller. But they can afso be found mounted onto the end of the shaft in some special pump designs. [Pg.66]

A more ambitious goal is to separate completely resonance effects from polar effects. This involves using separate substituent constants to account for resonance and polar effects. The modified equation, called a dual-substituent-parameter equation, takes... [Pg.210]

Other variations of the dual-bed scheme exist as a combination of thermal oxidizing reactors and catalytic reducing reactors. The Questor company has developed a reactor with three zones the first zone is a thermal reactor with limited air to raise the temperature of the exhaust gas, the second zone is a catalytic bed of metallic screens to reduce NO, and the third zone is another thermal reactor where secondary air is injected to complete the oxidation of CO and hydrocarbons (45). [Pg.73]

Because of their compact size, packaged vertical boilers can be custom-designed as a complete boiler plant system and simply shipped to the customer on a steel skid or platform. This type of system may comprise a dual boiler arrangement, with a pretreatment unit (water-softening and chemical-feed system), boiler blowdown and condensate return facilities, and also possibly a dual stack containing an economizer. This type of packaged system may reach 85% GCV efficiency. [Pg.39]

In the literature discussing these results, the coincidence of the NN bond lengths in diazonium ions with that in dinitrogen seems always to be regarded with complete satisfaction. In the opinion of the present author this close coincidence is somewhat surprising, firstly because of the fact that in diazonium ions one of the nitrogen atoms is bonded to another atom in addition to the N(2) atom, and secondly because work on dual substituent parameter evaluations of dediazoniation rates of substituted benzenediazonium ions clearly demonstrates that the nx orbitals of the N(l) nitrogen atom overlap with the aromatic 7t-electron system (see Sec. 8.4). [Pg.68]

The OWL optical design is shown in Fig. 1. It is based on a spherical and flat folding secondary mirrors, with a four-element corrector providing for the compensation of spherical and field aberrations as well as advanced active optics and dual-conjugate adaptive optics. A complete discussion would exceed the scope of this report we shall however mention a few key arguments supporting this solution ... [Pg.76]

Low number of surfaces (6) for the complete range of wavefront control functions field stabilization, active focusing and centering, actively deformable surfaces, dual conjugates adaptive optics ... [Pg.76]

It is important to note that the fitting according to eq. (1) requires zero intercept behavior i.e., F =. 00 for H (for which Oj = Or =. 00). While we recognize that the data for the unsubstituted (H) member of a set may be as subject to experimental error as any other member, such error is generally relatively small for a set of reliable data. Any constant error from this source will be distributed among all of the substituents in such a manner as to achieve best fit. Any loss in precision of fitting of the set which may result by such a procedure we believe is a small price to pay compared to the violence done by introduction in eq. (I) of a completely variable constant parameter. The latter procedure has been utilized by other authors both in treatments by the simple Hammett equation and by the dual substituent parameter equation. [Pg.512]

Zinc sulfide, ZnS, has been epitaxially deposited by the dual bath approach on Au(lll) surface and studied by STM and XPS [48]. The first complete ECALE cycle resulted in the formation of nanocrystallites of ZnS randomly distributed across Au(l 11) terraces, on account of lattice mismatch induced strain between ZnS and Au(lll) - although the mismatch is only 0.13% for ZnS/Au(lll). Atomically resolved STM images showed the ZnS/Au(lll) monolayer to be sixfold symmetric. The average diameter of the crystallites was 10 5 nm and the apparent coverage 0.38. [Pg.166]

Perhaps the most important paradigm in research on the mechanism of the electrocatalytic oxidation of small organic molecules is the dual pathway mechanism introduced in Capon and Parsons [1973a, b], and reviewed in Parsons and VanderNoot [1988]. In terms of methanol oxidation, the dual pathway may be summarized in a simplified way by Fig. 6.1. The idea is that the complete oxidation of methanol to carbon dioxide may follow two different pathways ... [Pg.160]

Within the general mechanism for the oxidation of Ci molecules, proposed by Bagotzsky, formic acid is one of the simplest cases, since it requires only the transfer of two electrons for the complete oxidation to CO2 [Bagotzky et al., 1977]. In fact, it has the same oxidation valency as CO both require two electrons for complete oxidation to CO2. When compared with CO, the reaction mechanism of formic acid is more complex although the catalysis of the oxidation reaction is much easier. In fact, formic acid can be readily oxidized at potentials as low as 0.2 V (vs. RHE). Its reaction mechanism takes place according to the well-established dual path mechanism [Capon and Parsons, 1973a, b] ... [Pg.177]


See other pages where Dual completion is mentioned: [Pg.229]    [Pg.348]    [Pg.229]    [Pg.348]    [Pg.228]    [Pg.571]    [Pg.98]    [Pg.653]    [Pg.457]    [Pg.446]    [Pg.373]    [Pg.493]    [Pg.1684]    [Pg.125]    [Pg.279]    [Pg.149]    [Pg.979]    [Pg.73]    [Pg.1004]    [Pg.551]    [Pg.197]    [Pg.33]    [Pg.109]    [Pg.519]    [Pg.598]    [Pg.98]    [Pg.136]    [Pg.187]    [Pg.443]    [Pg.743]    [Pg.805]    [Pg.74]    [Pg.859]    [Pg.268]    [Pg.384]    [Pg.194]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



© 2024 chempedia.info