Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Requirements micelles

Much of the controversy surrounding the mechanism is in the area of formation of particles. Some workers have claimed that particle formation does not require micelles, whilst others claim that once the micelles are exhausted particle formation ceases. [Pg.108]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

The catalytic effect on unimolecular reactions can be attributed exclusively to the local medium effect. For more complicated bimolecular or higher-order reactions, the rate of the reaction is affected by an additional parameter the local concentration of the reacting species in or at the micelle. Also for higher-order reactions the pseudophase model is usually adopted (Figure 5.2). However, in these systems the dependence of the rate on the concentration of surfactant does not allow direct estimation of all of the rate constants and partition coefficients involved. Generally independent assessment of at least one of the partition coefficients is required before the other relevant parameters can be accessed. [Pg.129]

In retrospect, this study has demonstrated the limitations of two commonly accepted methods of analysing solubilisation and micellar catalysis, respectively. It has become clear that solubilisate ririg-current induced shifts need to be interpreted with due caution. These data indicate a proximity of solubilisate and parts of the surfactant and, strictly, do not specify the location within the micelle where the encounter takes place. Also the use of the pseudophase model for bimolecular reactions requires precaution. When distribution of the reactants over the micelle is not comparable, erroneous results are likely to be obtained... [Pg.153]

Water-soluble initiator is added to the reaction mass, and radicals are generated which enter the micelles. Polymerization starts in the micelle, making it a growing polymer particle. As monomer within the particle converts to polymer, it is replenished by diffusion from the monomer droplets. The concentration of monomer in the particle remains as high as 5—7 molar. The growing polymer particles require more surfactant to remain stable, getting this from the uninitiated micelles. Stage I is complete once the micelles have disappeared, usually at or before 10% monomer conversion. [Pg.23]

One reason for widespread interest in the use of surfactants as gas mobihty control agents is the effectiveness at concentrations of <0.1 wt % (156,163). Some surfactants are effective below their critical micelle concentration (164). This low chemical requirement can significantly improve process economics. [Pg.193]

Influence of branching. The branched chain compounds are also able to form micelles, but compared to the straight-chain substances the cmc is always higher. Micelle formation is apparently complicated by the branching. Importance of the aromatic ring. Because of the higher local requirements, the benzene ring in LAS resp. TPBS causes an increase in surface activity and a reduction of cmc. [Pg.88]

Cgm can be easily evaluated The value of the concentration emulsifier in the micellar aggregates is required so as to properly evaluate the total surface of the micelles, In... [Pg.386]

Studies of reversed micelles dispersed in supercritical fluids have shown their ability to solubihze hydrophihc substances, including biomolecules and dyes, opening the door to many new applications [60,61]. In particular, solutions of reversed micelles in liquid and supercritical carbon dioxide have been suggested as novel media for processes generating a minimum amount of waste and with a low energy requirement [62]. [Pg.478]

The amphipathic character of phospholipids suggests that the two regions of the molecule have incompatible solubihties however, in a solvent such as water, phos-phohpids organize themselves into a form that thermodynamically serves the solubihty requirements of both regions. A micelle (Figure 41 ) is such a structure the hydrophobic regions are shielded from water, while the hydrophilic polar groups are immersed in the aqueous environment. However, micelles are usually relatively small in size (eg, approximately 200 nm) and thus are hmited in their potential to form membranes. [Pg.418]

Dietary fats, libers, and other carotenoids have been reported to interfere with carotenoid bioaccessibility. It is clear that by their presence in the gut, lipids create an environment in favor of hydrophobic compounds such as carotenoids. When arriving in the small intestinal lumen, dietary fats stimulate bile flow from the gallbladder and therefore enhance the micelle formation, which in turn could facilitate the emulsification of carotenoids into lipid micelles. Without micelle formation, carotenoids are poorly absorbed a minimum of 3 g of fat in meal is necessary for an efficient absorption of carotenoids, except for lutein esters that require higher amounts of fat. ... [Pg.159]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]


See other pages where Requirements micelles is mentioned: [Pg.387]    [Pg.457]    [Pg.226]    [Pg.387]    [Pg.457]    [Pg.226]    [Pg.2603]    [Pg.2901]    [Pg.2901]    [Pg.131]    [Pg.144]    [Pg.148]    [Pg.153]    [Pg.36]    [Pg.439]    [Pg.250]    [Pg.377]    [Pg.50]    [Pg.108]    [Pg.146]    [Pg.198]    [Pg.770]    [Pg.145]    [Pg.1158]    [Pg.213]    [Pg.47]    [Pg.49]    [Pg.240]    [Pg.465]    [Pg.42]    [Pg.169]    [Pg.393]    [Pg.98]    [Pg.62]    [Pg.418]    [Pg.477]    [Pg.351]    [Pg.65]    [Pg.111]    [Pg.119]    [Pg.213]    [Pg.81]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



© 2024 chempedia.info