Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Repeat unit Amino acid

As noted above, proteins are polyamides in which a-amino acids make up the repeat units, as shown by structure [III] ... [Pg.18]

Polymer Solutions. Perhaps the most extensively studied macromolecular Hquid crystals are the synthetic polypeptides, such as poly( y-benzyl L-glutamate) [25513-40-0] (PBLG). PBLG is a homopolymer of the L-enantiomorph of a single amino acid with the foUowiag repeat unit. [Pg.201]

Figure 1.2 Proteins are built up by amino acids that are linked by peptide bonds to form a polypeptide chain, (a) Schematic diagram of an amino acid. Illustrating the nomenclature used in this book. A central carbon atom (Ca) is attached to an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (H), and a side chain (R). (b) In a polypeptide chain the carboxyl group of amino acid n has formed a peptide bond, C-N, to the amino group of amino acid + 1. One water molecule is eliminated in this process. The repeating units, which are called residues, are divided into main-chain atoms and side chains. The main-chain part, which is identical in all residues, contains a central Ca atom attached to an NH group, a C =0 group, and an H atom. The side chain R, which is different for different residues, is bound to the Ca atom. Figure 1.2 Proteins are built up by amino acids that are linked by peptide bonds to form a polypeptide chain, (a) Schematic diagram of an amino acid. Illustrating the nomenclature used in this book. A central carbon atom (Ca) is attached to an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (H), and a side chain (R). (b) In a polypeptide chain the carboxyl group of amino acid n has formed a peptide bond, C-N, to the amino group of amino acid + 1. One water molecule is eliminated in this process. The repeating units, which are called residues, are divided into main-chain atoms and side chains. The main-chain part, which is identical in all residues, contains a central Ca atom attached to an NH group, a C =0 group, and an H atom. The side chain R, which is different for different residues, is bound to the Ca atom.
Figure 1.2 shows one way of dividing a polypeptide chain, the biochemist s way. There is, however, a different way to divide the main chain into repeating units that is preferable when we want to describe the structural properties of proteins. For this purpose it is more useful to divide the polypeptide chain into peptide units that go from one Ca atom to the next Ca atom (see Figure 1.5). Each C atom, except the first and the last, thus belongs to two such units. The reason for dividing the chain in this way is that all the atoms in such a unit are fixed in a plane with the bond lengths and bond angles very nearly the same in all units in all proteins. Note that the peptide units of the main chain do not involve the different side chains (Figure 1.5). We will use both of these alternative descriptions of polypeptide chains—the biochemical and the structural—and discuss proteins in terms of the sequence of different amino acids and the sequence of planar peptide units. Figure 1.2 shows one way of dividing a polypeptide chain, the biochemist s way. There is, however, a different way to divide the main chain into repeating units that is preferable when we want to describe the structural properties of proteins. For this purpose it is more useful to divide the polypeptide chain into peptide units that go from one Ca atom to the next Ca atom (see Figure 1.5). Each C atom, except the first and the last, thus belongs to two such units. The reason for dividing the chain in this way is that all the atoms in such a unit are fixed in a plane with the bond lengths and bond angles very nearly the same in all units in all proteins. Note that the peptide units of the main chain do not involve the different side chains (Figure 1.5). We will use both of these alternative descriptions of polypeptide chains—the biochemical and the structural—and discuss proteins in terms of the sequence of different amino acids and the sequence of planar peptide units.
The basic structural unit of these two-sheet p helix structures contains 18 amino acids, three in each p strand and six in each loop. A specific amino acid sequence pattern identifies this unit namely a double repeat of a nine-residue consensus sequence Gly-Gly-X-Gly-X-Asp-X-U-X where X is any amino acid and U is large, hydrophobic and frequently leucine. The first six residues form the loop and the last three form a p strand with the side chain of U involved in the hydrophobic packing of the two p sheets. The loops are stabilized by calcium ions which bind to the Asp residue (Figure S.28). This sequence pattern can be used to search for possible two-sheet p structures in databases of amino acid sequences of proteins of unknown structure. [Pg.84]

The coiled-coil fibrous proteins have heptad repeats in their amino acid sequence and form oligomers—usually dimers or trimers—through their coiled coils. These oligomeric units then assemble into fibers. [Pg.297]

The amplitudes and the phases of the diffraction data from the protein crystals are used to calculate an electron-density map of the repeating unit of the crystal. This map then has to be interpreted as a polypeptide chain with a particular amino acid sequence. The interpretation of the electron-density map is complicated by several limitations of the data. First of all, the map itself contains errors, mainly due to errors in the phase angles. In addition, the quality of the map depends on the resolution of the diffraction data, which in turn depends on how well-ordered the crystals are. This directly influences the image that can be produced. The resolution is measured in A... [Pg.381]

The cycle of deprotection, coupling, and washing is repeated as many times as desired to add amino acid units to the growing chain. [Pg.1037]

We ve seen on several occasions in previous chapters that a polymer, whether synthetic or biological, is a large molecule built up by repetitive bonding together of many smaller units, or monomers. Polyethylene, for instance, is a synthetic polymer made from ethylene (Section 7.10), nylon is a synthetic polyamide made from a diacid and a diamine (Section 21.9), and proteins are biological polyamides made from amino acids. Note that polymers are often drawn by indicating their repeating unit in parentheses. The repeat unit in polystyrene, for example, comes from the monomer styrene. [Pg.1206]

Sfi.F-Test 19.4B Write the formula for (a) the monomer of poly(methyl methacrylate), used in contact lenses (17) (b) two repeating units of polyalanine, the polymer of the amino acid alanine, CH,CH(NH2)COOH. [Pg.887]

Pneumococcus, polysaccharides from, 6-7 Poly(a-L-guluronic acid), 353, 355-356,415 Poly(P-D-mannuronic acid), 353-354,414 Polysaccharides, 311 -439 amino sugar derivatives, 166 chemical repeating units, 321, 324-325... [Pg.488]

Because proteins are not composed of identical repeating units, but of different amino acids, they do not fall within the formal definition of polymers given at the start of this chapter. They are nevertheless macromolecular and techniques developed for the study of tme polymers have been applied to them with success. However, for the most part they are outside the scope of this book and accordingly will receive very little attention in the chapters that follow. [Pg.21]

Sequencing The determination of the order in which the repeating units occur in a biopolymer, e.g. amino acids in a protein, sugar residues in a carbohydrate, etc. [Pg.311]

Many bacterial polysaccharides contain phosphoric ester groups. There is a limited number of examples of monoesters. More common are phosphoric diesters, connecting an amino alcohol or an alditol to the polysaccharide chain. Another possibility is that oligosaccharide or oligosaccharide-alditol repeating units are connected to a polymer by phosphoric diester linkages. In addition to the intracellular teichoic acids, several bacteria, for example, different types of Streptococcus pneumoniae, elaborate extracellular polymers of this type. These polymers are generally discussed in connection with the bacterial polysaccharides. [Pg.314]

POLY(AMINO acids). Both anionic [e.g., poly(L-aspartic acid) and poly(glutamic acid)] and cationic [e.g., poly[L-lysine)] poly(amino acids) have been suggested as potential drug carriers. Poly(L-lysine) is a homopolymer cosisting of repeating units of L-lysine. It exhibits some affinity for cancer cells and possesses antimicrobial and antiviral properties. It also shows... [Pg.573]

Such biosyntheses were models for the Merrifield-synthesis [8] (Fig. 3), which culminated in the development of fully automated peptide synthesizers [9]. In a repeated reaction cycle a N-terminal protected amino acid, which is attached with its C-terminal end to an insoluble solid support, is deprotected, activated and lengthened by a second protected amino acid unit. The deprotect -ing and coupling steps can be repeated until the entire peptide is assembled. [Pg.13]


See other pages where Repeat unit Amino acid is mentioned: [Pg.254]    [Pg.20]    [Pg.254]    [Pg.20]    [Pg.204]    [Pg.339]    [Pg.1525]    [Pg.5]    [Pg.65]    [Pg.298]    [Pg.215]    [Pg.29]    [Pg.4]    [Pg.262]    [Pg.65]    [Pg.1144]    [Pg.113]    [Pg.172]    [Pg.323]    [Pg.545]    [Pg.84]    [Pg.239]    [Pg.1306]    [Pg.964]    [Pg.338]    [Pg.121]    [Pg.54]    [Pg.191]    [Pg.195]    [Pg.261]    [Pg.322]    [Pg.52]    [Pg.98]    [Pg.352]    [Pg.289]    [Pg.322]    [Pg.324]   
See also in sourсe #XX -- [ Pg.782 ]




SEARCH



Repeating unit

© 2024 chempedia.info