Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation time measurements theory

Two-proton transfer in crystals of carboxylic acids has been studied thoroughly by the 7 -NMR and IINS methods. The proton spin-lattice relaxation time, measured by T,-NMR, is associated with the potential asymmetry A, induced by the crystalline field. The rate constant of thermally activated hopping between the acid monomers can be found from Tj using the theory of spin exchange [Look and Lowe, 1966] ... [Pg.179]

The whole discussion of polymer adsorption so far makes the fundamental assumption that the layer is at thermodynamic equilibrium. The relaxation times measured experimentally for polymer adsorption are very long and this equilibrium hypothesis is in many cases not satisfied [29]. The most striking example is the study of desorption if an adsorbed polymer layer is placed in contact with pure solvent, even after very long times (days) only a small fraction of the chains desorb (roughly 10%) polymer adsorption is thus mostly irreversible. A kinetic theory of polymer adsorption would thus be necessary. A few attempts have been made in this direction but the existing models remain rather rough [30,31]. [Pg.159]

Of the adjustable parameters in the Eyring viscosity equation, kj is the most important. In Sec. 2.4 we discussed the desirability of having some sort of natural rate compared to which rates of shear could be described as large or small. This natural standard is provided by kj. The parameter kj entered our theory as the factor which described the frequency with which molecules passed from one equilibrium position to another in a flowing liquid. At this point we will find it more convenient to talk in terms of the period of this vibration rather than its frequency. We shall use r to symbolize this period and define it as the reciprocal of kj. In addition, we shall refer to this characteristic period as the relaxation time for the polymer. As its name implies, r measures the time over which the system relieves the applied stress by the relative slippage of the molecules past one another. In summary. [Pg.98]

To extract information about xj from NMR data, the transverse relaxation time Tj may be used as well as the longitudinal time T. For gaseous nitrogen it was done first with Ti in [81] and confirmed later [82] when T was measured and used for the same goal. The NMR linewidth of 15N2 is the inverse of T2, and the theory, relating to Ti to x.1, is well known [39, 83]. For the case of diatomic and linear molecules the formula is... [Pg.57]

Electronic relaxation is a crucial and difficult issue in the analysis of proton relaxivity data. The difficulty resides, on the one hand, in the lack of a theory valid in all real conditions, and on the other hand in the technical problems of independent and direct determination of electronic relaxation parameters. Proton relaxivity is essentially influenced by the longitudinal electron spin relaxation time, Tle, of Gd111. This decay is too fast to be assessed by commonly available techniques, though very recently Tlc values have been directly measured.74 Nevertheless,... [Pg.851]

Even Anderson et al. [39] pointed out that an important consequence of the tunnelling model was the (logarithmic) dependence of the measured specific heat on the time needed for the measurement of c. The latter phenomenon was due to the large energy spread and relaxation time of TLS. In 1978, Black [45], by a critic revision of the tunnelling theory, has been able to explain the time dependence of the low-temperature specific heat. [Pg.83]

Rather sophisticated applications of Mossbauer spectroscopy have been developed for measurements of lifetimes. Adler et al. [37] determined the relaxation times for LS -HS fluctuation in a SCO compound by analysing the line shape of the Mossbauer spectra using a relaxation theory proposed by Blume [38]. A delayed coincidence technique was used to construct a special Mossbauer spectrometer for time-differential measurements as discussed in Chap. 19. [Pg.26]

The longitudinal relaxation time (Tf) of Cs in the presence of magnetic particles depends on whether the ions bind to the particle or not. In theory, predictions are that Ti measured in aqueous solutions containing the same... [Pg.265]

Chapter E is devoted to the mean-square dipole moment and mean rotational relaxation time derived from dielectric dispersion measurements. Typical data, both in helieogenic solvents and in the helix-coil transition region, are presented and interpreted in terms of existing theories. At thermodynamic equilibrium, helical and randomly coiled sequences in a polypeptide chain are fluctuating from moment to moment about certain averages. These fluctuations involve local interconversions of helix and random-coil residues. Recently, it has been shown that certain mean relaxation times of such local processes can be estimated by dielectric dispersion experiment. Chapter E also discusses the underlying theory of this possibility. [Pg.69]

Electron spin resonance (ESR) measures the absorption spectra associated with the energy states produced from the ground state by interaction with the magnetic field. This review deals with the theory of these states, their description by a spin Hamiltonian and the transitions between these states induced by electromagnetic radiation. The dynamics of these transitions (spin-lattice relaxation times, etc.) are not considered. Also omitted are discussions of other methods of measuring spin Hamiltonian parameters such as nuclear magnetic resonance (NMR) and electron nuclear double resonance (ENDOR), although results obtained by these methods are included in Sec. VI. [Pg.90]

While it is not clear how the constant frequency low field dielectric relaxation measurements mentioned above should be applied to reactions in liquids, save for a complete time-dependent theory of liquids, these effects are very significant. At short times (<10ps) the effective Onsager distance may be 20 nm, even in methanol or ethanol, but over the next two or three decades of time reduce to more nearly 2 nm. Such a change can reduce the rate of reaction much more rapidly than that which occurs by decay of the transient time dependence discussed in the previous sub-section. [Pg.55]

Samson and Deutch [258] and Hess [259a] have also discussed the reaction of anisotropic molecules, though only Hess considered rotational relaxation effects. No studies have used the experimentally measured values of rotational relaxation times, which may be 1.5—10 times faster than the Debye equation, eqn. (108), predicts. The theory of Sole and Stockmayer [256] will underestimate the rate of chemical reactions when rotational relaxation is faster than they assumed. [Pg.113]

The mean times t and tw will be called the number-average and weight-average relaxation times of the terminal region, and tw/t can be regarded as a measure of the breadth of the terminal relaxation time distribution. It should be emphasized that these relationships are merely consequences of linear viscoelastic behavior and depend in no way on assumptions about molecular behavior. The observed relationships between properties such as rj0, J°, and G and molecular parameters provides the primary evidence for judging molecular theories of the long relaxation times in concentrated systems. [Pg.25]

In this respect, another insufficiency of Lodge s treatment is more serious, viz. the lack of specification of the relaxation times, which occur in his equations. In this connection, it is hoped that the present paper can contribute to a proper valuation of the ideas of Bueche (13), Ferry (14), and Peticolas (13). These authors adapted the dilute solution theory of Rouse (16) by introducing effective parameters, viz. an effective friction factor or an effective friction coefficient. The advantage of such a treatment is evident The set of relaxation times, explicitly given for the normal modes of motion of separate molecules in dilute solution, is also used for concentrated systems after the application of some modification. Experimental evidence for the validity of this procedure can, in principle, be obtained by comparing dynamic measurements, as obtained on dilute and concentrated systems. In the present report, flow birefringence measurements are used for the same purpose. [Pg.172]


See other pages where Relaxation time measurements theory is mentioned: [Pg.726]    [Pg.258]    [Pg.206]    [Pg.160]    [Pg.298]    [Pg.290]    [Pg.41]    [Pg.81]    [Pg.228]    [Pg.30]    [Pg.369]    [Pg.140]    [Pg.383]    [Pg.725]    [Pg.230]    [Pg.659]    [Pg.114]    [Pg.176]    [Pg.257]    [Pg.297]    [Pg.111]    [Pg.181]    [Pg.136]    [Pg.153]    [Pg.389]    [Pg.392]    [Pg.194]    [Pg.153]    [Pg.155]    [Pg.210]    [Pg.211]    [Pg.42]    [Pg.78]    [Pg.48]   
See also in sourсe #XX -- [ Pg.81 , Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 ]




SEARCH



Measure theory

Measuring time

Relaxation measurements

Relaxation theory

Relaxation time 284 measuring

Time measurement

© 2024 chempedia.info