Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rejection polyamide composite

Table 1. Rejections by Aromatic Polyamide Composite Membrane ... Table 1. Rejections by Aromatic Polyamide Composite Membrane ...
Since the late 1970 s, researchers in the US, Japan, Korea, and other locations have been making an effort to develop chlorine-tolerant RO membranes that exhibit high flux and high rejection. Most work, such as that by Riley and Ridgway et.al., focuses on modifications in the preparation of polyamide composite membranes (see Chapter 4.2.2).11 Other work by Freeman (University of Texas at Austin) and others involves the development of chlorine-tolerant membrane materials other than polyamide. To date, no chlorine-resistant polyamide composite membranes are commercially available for large-scale application. [Pg.13]

Rejection is a property of the specific feed water component and the membrane of interest. Table 3.2 lists the general rejection ability of the most common polyamide composite RO membranes. Note that ionic charge of the component of interest plays a role its rejection by an RO membrane the rejection of multi-valent ions is generally greater than for mono-valent ions. [Pg.24]

Table 3.2 General rejection capabilities of most polyamide composite membranes at room temperature. Table 3.2 General rejection capabilities of most polyamide composite membranes at room temperature.
Polyamide, composite membranes are very sensitive to free chlorine (recall from Chapter 4.2.1 that cellulose acetate membranes can tolerate up to 1 ppm free chlorine continuously). Degradation of the polyamide composite membrane occurs almost immediately upon exposure and can result in significant reduction in rejection after 200 and 1,000-ppm hours of exposure to free chlorine (in other words after 200-1,000 hours exposure to 1 ppm free chlorine). The rate of degradation depends on two important factors 1) degradation is more rapid at high pH than at neutral or low pH, and 2) the presence of transition metals such as iron, will catalyze the oxidation of the membrane. [Pg.136]

Another note of caution with chloramines is the need for good pH control. If the pH gets up to 9, dissolved ammonia gas is present as NH3(g), which swells at least some polyamide composite membranes. This swelling can be enough to drop the salt rejection from 98% down to about 85%.10 Dropping the pH back to about 7 converts the ammonia gas to ammonium ion, which does not swell the membrane and rejection returns to nominal. [Pg.137]

The sum of chlorine gas, sodium hypochlorite, calcium hypochlorite, hydochlorous acid, and hypochlorite ion is known as the free or free available chlorine. Most polyamide composite membranes have little tolerance for free chlorine they can tolerate about 200 - 1,000 ppm-hrs of exposure (e.g., 200 hours at 1 ppm of free chlorine) before rejection drops to unacceptable levels. While the pretreatment to RO should have a free chlorine residual of about 0.5 to lppm, the influent to the RO must be dechlorinated to bring the free chlorine concentration down to less than 0.02 ppm. [Pg.173]

A typical recipe for an interfacially formed aromatic polyamide composite membrane comprised a 2.0% aqueous solution of the aromatic diamine and a 0.1% nonaqueous solution of trimesoyl chloride. This recipe was extraordinarily simple, and ran quite contrary to experience with piperazine-based membranes. For example, surfactants and acid acceptors in the aromatic diamine solution were generally not beneficial, and in many cases degraded membrane performance by lowering salt rejection. In contrast, surfactants and acid acceptors were almost always beneficial in the NS-300 membrane system. In the nonaqueous phase, use of isophthaloyl chloride as a partial replacement for trimesoyl chloride had relatively little effect on flux, but tended to decrease salt rejection and increase susceptibility to chlorine attack. [Pg.327]

Chemical modification The surface of a membrane can be modified by chemical reactions. For example, when the surface of a polyamide composite membrane is brought into contact with a strong hydrofluoric acid solution, the top polyamide layer becomes sHghtly thinner by a chemical reaction with hydrofluoric acid. As a result, the flux increases considerably while the rejection of sodium chloride is unchanged or slightly increased [8]. [Pg.10]

Nanofiltration membranes are able to remove most of the As(V) but the removal rate for As(III) is low. Urase etal (1998) studied the rejection ofAs by ES-10, an aromatic polyamide composite membrane (Nitto-Denko Co. Ltd.). The rejection ofAs(V) andAs(III) increased with the increase of pH and rejections of 93% at pH 10 for As(V) and 50-89% for As(lll) were found. A loose nanofiltration (NF) membrane, NF-45 (polyamide thin film composite membranes) was reported by Vrijenhoek et al. (2000) and a rejection of 90% for As(V) and fairly low rejection of 10-20% for As(III) were found. [Pg.258]

Polyamide composite membrane is selected for RO due to its high mechanical strength and robust nature imported by its aromatic backbone. It exhibits high rejection for TDS and other contaminants and is primarily known for its selective permeability to water and relative impermeability to various dissolved impurities including fluoride and other salt ions. Moreover, polyamide is not susceptible to biological fouling and can operate over a wide range of pH conditions (2-11) and temperature up to 45° C. [Pg.120]

Limited testing on chlorine sensitivity of poly(ether/amidel and poly(ether/urea) thin film composite membranes have been reported by Fluid Systems Division of UOP [4]. Poly(ether/amide] membrane (PA-300] exposed to 1 ppm chlorine in feedwater for 24 hours showed a significant decline in salt rejection. Additional experiments at Fluid Systems were directed toward improvement of membrane resistance to chlorine. Different amide polymers and fabrication techniques were attempted but these variations had little effect on chlorine resistance [5]. Chlorine sensitivity of polyamide membranes was also demonstrated by Spatz and Fried-lander [3]. It is generally concluded that polyamide type membranes deteriorate rapidly when exposed to low chlorine concentrations in water solution. [Pg.172]

Fig. 1. Water flux and NaCl rejection of several membrane types (10), where (D) represents seawater membranes, which operate at 5.5 MPa and 25°C ( ), brackish water membranes, which operate at 1500 mg/L NaCl feed, 1.5 MPa, and 25°C and (SSI) nanofiltration membranes, which operate at 500 mg/L NaCl feed, 0.74 MPa, and 25°C. A represents cellulose acetate—cellulose triacetate B, linear aromatic polyamide C, cross-linked polyether D, cross-linked fully aromatic polyamide E, other thin-film composite membranes F, asymmetric membranes G, BW-30 (FilmTec) H, SU-700 (Toray) I, A-15 (Du Pont) J, NTR-739HF (Nitto-Denko) K, NTR-729HF (Nitto-Denko) L, NTR-7250 (Nitto-Denko) M, NF40 (FilmTec) N, NF40HF (FilmTec) O, UTC-40HF (Toray) P, NF70 (FilmTec) Q, UTC-60 (Toray) R, UTC-20HF (Toray) and S, NF50 (FilmTec). To convert MPa to psi,... Fig. 1. Water flux and NaCl rejection of several membrane types (10), where (D) represents seawater membranes, which operate at 5.5 MPa and 25°C ( ), brackish water membranes, which operate at 1500 mg/L NaCl feed, 1.5 MPa, and 25°C and (SSI) nanofiltration membranes, which operate at 500 mg/L NaCl feed, 0.74 MPa, and 25°C. A represents cellulose acetate—cellulose triacetate B, linear aromatic polyamide C, cross-linked polyether D, cross-linked fully aromatic polyamide E, other thin-film composite membranes F, asymmetric membranes G, BW-30 (FilmTec) H, SU-700 (Toray) I, A-15 (Du Pont) J, NTR-739HF (Nitto-Denko) K, NTR-729HF (Nitto-Denko) L, NTR-7250 (Nitto-Denko) M, NF40 (FilmTec) N, NF40HF (FilmTec) O, UTC-40HF (Toray) P, NF70 (FilmTec) Q, UTC-60 (Toray) R, UTC-20HF (Toray) and S, NF50 (FilmTec). To convert MPa to psi,...
Nanofiltration membranes usually have good rejections of organic compounds having molecular weights above 200—500 (114,115). NF provides the possibility of selective separation of certain organics from concentrated monovalent salt solutions such as NaCl. The most important nanofiltration membranes are composite membranes made by interfacial polymerization. Polyamides made from piperazine and aromatic acyl chlorides are examples of widely used nanofiltration membrane. Nanofiltration has been used in several commercial applications, among which are demineralization, oiganic removal, heavy-metal removal, and color removal (116). [Pg.155]

The importance of proper RO membrane selection has already been discussed. A review of commercially available RO membranes revealed five different basic membranes that could provide organic recovery. Cellulose acetate and cellulose acetate blends, aromatic polyamide, polyamide thin-film composite, cross-linked polyimine thin-film composite (FT-30), and polybenzimidazole were available when this work was performed. Only the first four types were commercially available. All membranes were available with excellent salt rejection (>97 sodium chloride). Two types of membranes, cellulose acetate and FT-30, have shown short-term (<2-months intermittent use) resistance... [Pg.437]

Nonetheless a few commercially successful noncellulosic membrane materials were developed. Polyamide membranes in particular were developed by several groups. Aliphatic polyamides have low rejections and modest fluxes, but aromatic polyamide membranes were successfully developed by Toray [25], Chemstrad (Monsanto) [26] and Permasep (Du Pont) [27], all in hollow fiber form. These membranes have good seawater salt rejections of up to 99.5 %, but the fluxes are low, in the 1 to 3 gal/ft2 day range. The Permasep membrane, in hollow fine fiber form to overcome the low water permeability problems, was produced under the names B-10 and B-15 for seawater desalination plants until the year 2000. The structure of the Permasep B-15 polymer is shown in Figure 5.7. Polyamide membranes, like interfacial composite membranes, are susceptible to degradation by chlorine because of their amide bonds. [Pg.200]

These membranes have exceptional properties, including seawater salt rejections of up to 99.6 % and fluxes of 23 gal/ft2 day at 800 psi. Unfortunately, they are even more sensitive to oxidants such as chlorine or dissolved oxygen than the polyamide/polyurea interfacial composites. The membranes lose their excellent properties after a few hundred hours of operation unless the feed water is completely free of dissolved chlorine and oxygen. A great deal of work was devoted to stabilizing this membrane, with little success. [Pg.204]

Seawater has a salt concentration of 3.2-4.0%, depending on the region of the world. Because of this high salinity, only membranes with salt rejections of 99.3 % or more can produce potable water in a single pass. Application to seawater desalination of the first-generation cellulose acetate membranes, with rejections of 97-99 %, was limited. With the development of the polyamide hollow fine fibers and interfacial composites, suitable seawater membranes became available, and many plants have been installed. In general, membranes are not... [Pg.224]

Salts rejected by the membrane stay in the concentrating stream but are continuously disposed from the membrane module by fresh feed to maintain the separation. Continuous removal of the permeate product enables the production of freshwater. RO membrane-building materials are usually polymers, such as cellulose acetates, polyamides or polyimides. The membranes are semipermeable, made of thin 30-200 nanometer thick layers adhering to a thicker porous support layer. Several types exist, such as symmetric, asymmetric, and thin-film composite membranes, depending on the membrane structure. They are usually built as envelopes made of pairs of long sheets separated by spacers, and are spirally wound around the product tube. In some cases, tubular, capillary, and even hollow-fiber membranes are used. [Pg.222]

Cellulose acetate and linear aromatic polyamide membranes were the industry standard until 1972, when John Cadotte, then at North Star Research, prepared the first interfacial composite polyamide membrane.8 This new membrane exhibited both higher throughput and rejection of solutes at lower operating pressure than the here-to-date cellulose acetate and linear aromatic polyamide membranes. Later, Cadotte developed a fully aromatic interfacial composite membrane based on the reaction of phenylene diamine and trimesoyl chloride. This membrane became the new industry standard and is known today as FT30, and it is the basis for the majority... [Pg.10]


See other pages where Rejection polyamide composite is mentioned: [Pg.319]    [Pg.319]    [Pg.14]    [Pg.208]    [Pg.850]    [Pg.336]    [Pg.337]    [Pg.12]    [Pg.208]    [Pg.15]    [Pg.251]    [Pg.144]    [Pg.151]    [Pg.155]    [Pg.144]    [Pg.151]   


SEARCH



Reject, rejects

Rejects

Rejects composition

© 2024 chempedia.info