Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

References solid surfaces

A heat of immersion may refer to the immersion of a clean solid surface, qs.imm. or to the immersion of a solid having an adsorbed film on the surface. If the immersion of this last is into liquid adsorbate, we then report qsv.imm if tbe adsorbed film is in equilibrium with the saturated vapor pressure of the adsorbate (i.e., the vapor pressure of the liquid adsorbate P ), we will write It follows from these definitions... [Pg.352]

Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

As will be demonstrated in Chapter 4, however, the presence of micropores distorts the Type II isotherm in a sense which is reflected in a much increased value of the constant c. In such cases the value of c is no guide at all to the course of the isotherm on the external surface. Consequently the appropriate criterion for choosing the correct f-curve for a particular system is the similarity in chemical properties and not in c-values l>etween the solid under test and the reference solid. [Pg.94]

If the isotherm of G on the solid under test is identical in shape with that on the reference sample, then its x,-plot will be a straight line passing through the origin, and having a slope equal to the ratio >4(test solid)/>4(reference solid). Since >4(reference solid) is known, the specific surface of the test solid is obtainable at once. [Pg.257]

If a Type I isotherm exhibits a nearly constant adsorption at high relative pressure, the micropore volume is given by the amount adsorbed (converted to a liquid volume) in the plateau region, since the mesopore volume and the external surface are both relatively small. In the more usual case where the Type I isotherm has a finite slope at high relative pressures, both the external area and the micropore volume can be evaluated by the a,-method provided that a standard isotherm on a suitable non-porous reference solid is available. Alternatively, the nonane pre-adsorption method may be used in appropriate cases to separate the processes of micropore filling and surface coverage. At present, however, there is no reliable procedure for the computation of micropore size distribution from a single isotherm but if the size extends down to micropores of molecular dimensions, adsorptive molecules of selected size can be employed as molecular probes. [Pg.286]

There is an important difference between the two techniques in that photons, produced by XRF, can pass through a relatively large thickness of a solid sample, typically 4000 nm, whereas electrons can penetrate only about 2 nm. This means that AES is more useful in the study of solid surfaces, whereas XRF gives information referring more to the bulk of a solid or liquid. [Pg.317]

Natural convection occurs when a solid surface is in contact with a fluid of different temperature from the surface. Density differences provide the body force required to move the flmd. Theoretical analyses of natural convection require the simultaneous solution of the coupled equations of motion and energy. Details of theoretical studies are available in several general references (Brown and Marco, Introduction to Heat Transfer, 3d ed., McGraw-HiU, New York, 1958 and Jakob, Heat Transfer, Wiley, New York, vol. 1, 1949 vol. 2, 1957) but have generally been applied successfully to the simple case of a vertical plate. Solution of the motion and energy equations gives temperature and velocity fields from which heat-transfer coefficients may be derived. The general type of equation obtained is the so-called Nusselt equation hL I L p gp At cjl... [Pg.559]

The adsorption of gas onto a solid surface can also be used to estimate surface energy. Both inverse gas chromatography (IGC) and isotherm measurement using the BET method [19] have been used. Further discussion and detailed references are given by Lucic et al. [20] who compare the application of IGC, BET and contact angle methods for characterising the surface energies of stearate-coated calcium carbonate fillers. [Pg.323]

Referring to the ionic effects, measuring of swelling in solutions which closely model real ones can provide reliable estimates. The papers [58, 132] can serve as examples of such an approach. In choosing a type of SAH suitable for some particular soil it is necessary to take into account the acid-base properties of the gel and the soil because otherwise collapse phenomena are likely to result from common counterions and the sorption on solid surfaces. [Pg.129]

H. Ohtani, C.-T. Kao, M.A.V. Hove, and G. Somorjai, A tabulation and classification of the stmctures of clean solid surfaces and of adsorbed atomic and molecular monolayes as determined from low energy electron diffraction patterns, Progress in Surface Science 23(2,3), 155-316 (1986) and reference therein. [Pg.85]

Most of the publications dedicated to the interaction between the RGMAs and a solid surface refer to the rare gas - metal system. The secondary electron emission that occurs in the system allows one to judge of the mechanism that deactivates metastable atoms on a metal surface, as well as to evaluate the concentration of metastable atoms in the gaseous phase. [Pg.320]

The boundary conditions for this early dissolution model included saturated solubility for HA at the solid surface (Cha ) with sink conditions for both HA and A at the outer boundary of a stagnant film (Cha = Ca = 0). Since diffusion is the sole mechanism for mass transfer considered and the process occurs within a hypothesized stagnant film, these types of models are colloquially referred to as film models. Applying the simplifying assumption that the base concentration at the solid surface is negligible relative to the base concentration in the bulk solution (CB CB(o)), it is possible to derive a simplified scaled expression for the relative flux (N/N0) from HPWH s original expressions ... [Pg.128]

Hermann, K. and Witko, M. (2001) Chapter 4, in The Chemical Physics of Solid Surfaces Oxide Surfaces, vol. 9 (ed. D.P. Woodruff), Elsevier Science, p. 136 and references therein. [Pg.186]

In the literature we can now find several papers which establish a widely accepted scenario of the benefits and effects of an ultrasound field in an electrochemical process [13-15]. Most of this work has been focused on low frequency and high power ultrasound fields. Its propagation in a fluid such as water is quite complex, where the acoustic streaming and especially the cavitation are the two most important phenomena. In addition, other effects derived from the cavitation such as microjetting and shock waves have been related with other benefits reported for this coupling. For example, shock waves induced in the liquid cause not only an enhanced convective movement of material but also a possible surface damage. Micro jets of liquid, with speeds of up to 100 ms-1, result from the asymmetric collapse of cavitation bubbles at the solid surface [16] and contribute to the enhancement of the mass transport of material to the solid surface of the electrode. Therefore, depassivation [17], reaction mechanism modification [18], surface activation [19], adsorption phenomena decrease [20] and the mass transport enhancement [21] are effects derived from the presence of an ultrasound field on electrode processes. We have only listed the main phenomena referring to the reader to the specific reviews [22, 23] and reference therein. [Pg.108]

The surface area of a solid material is important in that it provides information on the available void spaces on the surfaces of a powdered solid [48]. In addition, the dissolution rate of a solid is partially determined by its surface area. The most reproducible measurements of the surface area of a solid are obtained by adsorbing a monolayer of inert gas onto the solid surface at reduced temperature and subsequently desorbing this gas at room temperature. The sorption isotherms obtained in this technique are interpreted using the equations developed by Brunauer, Emmett, and Teller, and therefore the technique is referred to as the B.E.T. method [49]. The surface area is obtained in units of square meters of surface per gram of material. [Pg.19]

CVD [Chemical Vapor Deposition] A general term for any process for depositing a solid on a solid surface by a chemical reaction from reactants in the gas phase. To be distinguished from Physical Vapor Deposition (PVD), in which no chemical reaction takes place. (For the ten international conferences held on this between 1967 and 1987 see the reference by Stinton et al. below.)... [Pg.76]


See other pages where References solid surfaces is mentioned: [Pg.2743]    [Pg.177]    [Pg.600]    [Pg.1880]    [Pg.513]    [Pg.3]    [Pg.326]    [Pg.157]    [Pg.1175]    [Pg.163]    [Pg.75]    [Pg.89]    [Pg.290]    [Pg.145]    [Pg.126]    [Pg.17]    [Pg.110]    [Pg.53]    [Pg.196]    [Pg.318]    [Pg.5]    [Pg.21]    [Pg.673]    [Pg.710]    [Pg.29]    [Pg.170]    [Pg.391]    [Pg.321]    [Pg.209]    [Pg.35]    [Pg.104]    [Pg.37]   
See also in sourсe #XX -- [ Pg.1029 ]

See also in sourсe #XX -- [ Pg.1029 ]




SEARCH



© 2024 chempedia.info