Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference electrodes tubes

The reference electrode recommended for use in the AlCl3-NaCl melt is the A1(III)/A1 couple that is obtained by placing an aluminum wire in a tube containing NaCl(satd) melt (49.8-50.2 mol% AlCl3-NaCl at 175°C). The reference electrode tube is terminated at one end with a Pyrex frit [26] or a thin Pyrex membrane [27]. A platinum wire quasi-reference electrode is used by some researchers [28]. [Pg.518]

One example of a liquid-based ion-selective electrode is that for Ca +, which uses a porous plastic membrane saturated with di-(n-decyl) phosphate (Figure 11.13). As shown in Figure 11.14, the membrane is placed at the end of a nonconducting cylindrical tube and is in contact with two reservoirs. The outer reservoir contains di-(n-decyl) phosphate in di- -octylphenylphosphonate, which soaks into the porous membrane. The inner reservoir contains a standard aqueous solution of Ca + and a Ag/AgCl reference electrode. Calcium ion-selective electrodes are also available in which the di-(n-decyl) phosphate is immobilized in a polyvinyl chloride... [Pg.482]

This experiment describes the preparation of liquid ion-exchange electrodes for Gk and Ga +. The liquid ion-exchange solutions are incorporated into PVG membranes and fixed to the end of glass tubing. The internal solutions are either NaGl or GaGk, and a Ag/AgGl reference electrode is situated in the internal solution. [Pg.533]

In the cathodic protection of storage tanks, potentials should be measured in at least three places, i.e., at each end and at the top of the cover [16]. Widely different polarized areas arise due to the small distance which is normally the case between the impressed current anodes and the tank. Since such tanks are often buried under asphalt, it is recommended that permanent reference electrodes or fixed measuring points (plastic tubes under valve boxes) be installed. These should be located in areas not easily accessible to the cathodic protection current, for example between two tanks or between the tank wall and foundations. Since storage tanks usually have several anodes located near the tank, equalizing currents can flow between the differently loaded anodes on switching off the protection system and thus falsify the potential measurement. In such cases the anodes should be separated. [Pg.100]

Six iron anodes are required for corrosion protection of each condenser, each weighing 13 kg. Every outflow chamber contains 14 titanium rod anodes, with a platinum coating 5 /tm thick and weighing 0.73 g. The mass loss rate for the anodes is 10 kg A a for Fe (see Table 7-1) and 10 mg A a for Pt (see Table 7-3). A protection current density of 0.1 A m is assumed for the coated condenser surfaces and 1 A m for the copper alloy tubes. This corresponds to a protection current of 27 A. An automatic potential-control transformer-rectifier with a capacity of 125 A/10 V is installed for each main condenser. Potential control and monitoring are provided by fixed zinc reference electrodes. Figure 21-2 shows the anode arrangement in the inlet chamber [9]. [Pg.469]

The principle reference electrodes used in the onshore and offshore industries have remained unchanged. The CU/CUSO4 cell is used almost exclusively onshore in the form based on the plastic tube and porous wooden plug illustrated in Fig. 10.40, although certain potential survey instruments have... [Pg.256]

Glass electrodes are now available as combination electrodes which contain the indicator electrode (a thin glass bulb) and a reference electrode (silver-silver chloride) combined in a single unit as depicted in Fig. 15.2(h). The thin glass bulb A and the narrow tube B to which it is attached are filled with hydrochloric acid and carry a silver-silver chloride electrode C. The wide tube D is fused to the lower end of tube B and contains saturated potassium chloride solution which is also saturated with silver chloride it carries a silver-silver chloride electrode E. The assembly is sealed with an insulating cap. [Pg.556]

Prepare 250 mL of 0.02 M potassium dichromate solution and an equal volume of ca 0.1 M ammonium iron(II) sulphate solution the latter must contain sufficient dilute sulphuric acid to produce a clear solution, and the exact weight of ammonium iron(II) sulphate employed should be noted. Place 25 mL of the ammonium iron(II) sulphate solution in the beaker, add 25 mL of ca 2.5M sulphuric acid and 50 mL of water. Charge the burette with the 0.02 M potassium dichromate solution, and add a capillary extension tube. Use a bright platinum electrode as indicator electrode and an S.C.E. reference electrode. Set the stirrer in motion. Proceed with the titration as directed in Experiment 1. After each addition of the dichromate solution measure the e.m.f. of the cell. Determine the end point (1) from the potential-volume curve and (2) by the derivative method. Calculate the molarity of the ammonium iron(II) sulphate solution, and compare this with the value calculated from the actual weight of solid employed in preparing the solution. [Pg.581]

The H-type cell devised by Lingane and Laitinen and shown in Fig. 16.9 will be found satisfactory for many purposes a particular feature is the built-in reference electrode. Usually a saturated calomel electrode is employed, but if the presence of chloride ion is harmful a mercury(I) sulphate electrode (Hg/Hg2 S04 in potassium sulphate solution potential ca + 0.40 volts vs S.C.E.) may be used. It is usually designed to contain 10-50 mL of the sample solution in the left-hand compartment, but it can be constructed to accommodate a smaller volume down to 1 -2 mL. To avoid polarisation of the reference electrode the latter should be made of tubing at least 20 mm in diameter, but the dimensions of the solution compartment can be varied over wide limits. The compartments are separated by a cross-member filled with a 4 per cent agar-saturated potassium chloride gel, which is held in position by a medium-porosity sintered Pyrex glass disc (diameter at least 10 mm) placed as near the solution compartment as possible in order to facilitate de-aeration of the test solution. By clamping the cell so that the cross-member is vertical, the molten... [Pg.609]

Figure 4a. Electrochemical cells for microwave conductivity measurements. Cell above microwave conduit (1) electrochemical cell (plastic tube, placed on working electrode material), (2) counter-electrode, (3) reference electrode, (4) electrolyte, (5) space charge layer, (6) diffusion layer, (7) contact to working electrode, (8) waveguide. Figure 4a. Electrochemical cells for microwave conductivity measurements. Cell above microwave conduit (1) electrochemical cell (plastic tube, placed on working electrode material), (2) counter-electrode, (3) reference electrode, (4) electrolyte, (5) space charge layer, (6) diffusion layer, (7) contact to working electrode, (8) waveguide.
Figure 10.6. Electrochemical cell (1) reference electrode, (2) molten catalyst, (3) porous Pyrex membrane, (4) counter electrode, (5) gas inlet Pyrex tube, (6) working electrode.12 Reproduced by permission of the Electrochemical Society. Figure 10.6. Electrochemical cell (1) reference electrode, (2) molten catalyst, (3) porous Pyrex membrane, (4) counter electrode, (5) gas inlet Pyrex tube, (6) working electrode.12 Reproduced by permission of the Electrochemical Society.
Reference electrodes of Pt-air and In-In203 are useful to measure oxygen in sodium at 700-1100 K. Problems in the stability of the electrolyte tubes require the use of Th02 and 203 . [Pg.337]

The principle of the jet method, which also utilizes a condenser, was originated by Kenrick and improved by Randles and later by McTigue et al. It may be summarized as follows A jet of one liquid is directed down the axis of a tube, the inner surface of which is covered by a stream of the second liquid. If the reference electrodes are the same and the outer... [Pg.22]

Two aqueous phases separated by a liquid membrane, EM, of nitrobenzene, NB, were layered in a glass tube, which was equipped with Pt counterelectrodes in W1 and W2 and reference electrodes in three phases as in Eq. (1). Reference electrodes set in W1 and W2 were Ag/AgCl electrodes, SSE, and those in LM were two tetraphenylborate ion selective electrodes [26,27], TPhBE, of liquid membrane type. The membrane current, /wi-w2 was applied using two Pt electrodes. The membrane potential, AFwi-wi recorded as the potential of SSE in W2 vs. that in W1. When a constant current of 25 /aA cm was applied from W1 to W2 in the cell given as Eq. (1), the oscillation of membrane potential was observed as shown in curve 1 of Fig. 1. The oscillation of AFwi-wi continued for 40 to 60 min, and finally settled at ca. —0.40 V. [Pg.610]

Fig. 4.10 Capillary electrometer. The basic component is the cell consisting of an ideally polarized electrode (formed by the mercury meniscus M in a conical capillary) and the reference electrode R. This system is connected to a voltage source S. The change of interfacial tension is compensated by shifting the mercury reservoir H so that the meniscus always has a constant position. The distance between the upper level in the tube and the meniscus h is measured by means of a cathetometer C. (By courtesy of L. Novotny)... Fig. 4.10 Capillary electrometer. The basic component is the cell consisting of an ideally polarized electrode (formed by the mercury meniscus M in a conical capillary) and the reference electrode R. This system is connected to a voltage source S. The change of interfacial tension is compensated by shifting the mercury reservoir H so that the meniscus always has a constant position. The distance between the upper level in the tube and the meniscus h is measured by means of a cathetometer C. (By courtesy of L. Novotny)...
The membrane of the glass electrode is blown on the end of a glass tube. This tube is filled with a solution with a constant pH (acetate buffer, hydrochloric acid) and a reference electrode is placed in this solution (silver chloride or calomel electrodes). During the measurement, this whole system is immersed with another reference electrode into the test solution. The membrane potential of the glass electrode, when the internal and analysed... [Pg.439]

Figure 2.25 Schematic representation of the STM head and electrochemical assembly. (I) Inchworm motor, (2) Inch worm, (3) Faraday cage around tube scanner, (4) Teflon electrochemical cell, (5) working electrode (i.e. sample), (6) stainless steel plates, (7) halved rubber O rings, (8) elasticated ropes attatched to baseplate. The counter and reference electrodes and the various electrical connections arc not shown for clarity. From Christensen (1992). Figure 2.25 Schematic representation of the STM head and electrochemical assembly. (I) Inchworm motor, (2) Inch worm, (3) Faraday cage around tube scanner, (4) Teflon electrochemical cell, (5) working electrode (i.e. sample), (6) stainless steel plates, (7) halved rubber O rings, (8) elasticated ropes attatched to baseplate. The counter and reference electrodes and the various electrical connections arc not shown for clarity. From Christensen (1992).

See other pages where Reference electrodes tubes is mentioned: [Pg.198]    [Pg.1686]    [Pg.480]    [Pg.493]    [Pg.498]    [Pg.467]    [Pg.51]    [Pg.282]    [Pg.408]    [Pg.479]    [Pg.655]    [Pg.1120]    [Pg.61]    [Pg.533]    [Pg.543]    [Pg.550]    [Pg.560]    [Pg.583]    [Pg.593]    [Pg.610]    [Pg.76]    [Pg.148]    [Pg.484]    [Pg.552]    [Pg.192]    [Pg.469]    [Pg.358]    [Pg.89]    [Pg.191]    [Pg.219]    [Pg.199]    [Pg.293]    [Pg.300]   


SEARCH



Reference electrodes

Tube electrode

© 2024 chempedia.info