Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference electrode surface

Figure 5.18. Schematic representation of the density of states N(E) in the conduction band and of the definitions of work function d>, chemical potential of electrons p, electrochemical potential of electrons or Fermi level p, surface potential x> Galvani (or inner) potential

Figure 5.18. Schematic representation of the density of states N(E) in the conduction band and of the definitions of work function d>, chemical potential of electrons p, electrochemical potential of electrons or Fermi level p, surface potential x> Galvani (or inner) potential <p and Volta (or outer) potential T for the catalyst (W) and for the reference electrode (R). The measured potential difference Uwr is by definition the difference in Fermi levels <p, p and p are spatially uniform O and can vary locally on the metal sample surfaces and the T potentials vanish, on the average, for the (effective double layer covered) gas-exposed catalyst and reference electrode surfaces.32 Reprinted with permission from The Electrochemical Society.
Covering the Ag/AgCl reference electrode surface with hydrophobic polymer, such as a solvent-processible polyurethane (PU), was reported to provide a stable potential... [Pg.302]

A redox reaction is not only dependent on the electrode material, but also on the electrolyte solution. As we have seen, platinum was highly polarizable in the NaCl solution. However, if the surface is saturated with dissolved hydrogen gas, a redox system is created (H/H ), and then the platinum electrode becomes a nonpolarizable reference electrode. Surface oxidation, adsorption processes, and organic redox processes may reduce the polarizability and increase the applicability of a platinum electrode in tissue media. [Pg.207]

There are two procedures for doing this. The first makes use of a metal probe coated with an emitter such as polonium or Am (around 1 mCi) and placed above the surface. The resulting air ionization makes the gap between the probe and the liquid sufficiently conducting that the potential difference can be measured by means of a high-impedance dc voltmeter that serves as a null indicator in a standard potentiometer circuit. A submerged reference electrode may be a silver-silver chloride electrode. One generally compares the potential of the film-covered surface with that of the film-free one [83, 84]. [Pg.116]

Fig. V-17. Schematic diagram for the apparatus for measurement of Vobs (see text). The vibrating reference electrode is positioned close to the surface of a AgN03 solution in which there is an Ag electrode, which, in turn, is in electrical contact with the reference electrode. (From Ref. 196.)... Fig. V-17. Schematic diagram for the apparatus for measurement of Vobs (see text). The vibrating reference electrode is positioned close to the surface of a AgN03 solution in which there is an Ag electrode, which, in turn, is in electrical contact with the reference electrode. (From Ref. 196.)...
Wlien an electrical coimection is made between two metal surfaces, a contact potential difference arises from the transfer of electrons from the metal of lower work function to the second metal until their Femii levels line up. The difference in contact potential between the two metals is just equal to the difference in their respective work fiinctions. In the absence of an applied emf, there is electric field between two parallel metal plates arranged as a capacitor. If a potential is applied, the field can be eliminated and at this point tire potential equals the contact potential difference of tlie two metal plates. If one plate of known work fiinction is used as a reference electrode, the work function of the second plate can be detennined by measuring tliis applied potential between the plates [ ]. One can detemiine the zero-electric-field condition between the two parallel plates by measuring directly the tendency for charge to flow through the external circuit. This is called the static capacitor method [59]. [Pg.1894]

The terms resistance and resistivity are both used when referring to the resistance of an object to current flow. Surface resistance is the measure of electrical resistance along the surface of an object. However, the current flow is not limited to the surface of the object. Some of the current passes through the bulk of the object from one electrode to the other electrode. Surface resistivity includes the dimensions of the object in its measurement (Eig. 2c). [Pg.290]

On the electrode side of the double layer the excess charges are concentrated in the plane of the surface of the electronic conductor. On the electrolyte side of the double layer the charge distribution is quite complex. The potential drop occurs over several atomic dimensions and depends on the specific reactivity and atomic stmcture of the electrode surface and the electrolyte composition. The electrical double layer strongly influences the rate and pathway of electrode reactions. The reader is referred to several excellent discussions of the electrical double layer at the electrode—solution interface (26-28). [Pg.510]

Eigure 3 schematically depicts the stmcture of the electrode—solution interface. The inner Helmholtz plane (IHP) refers to the distance of closest approach of specifically adsorbed ions, generally anions to the electrode surface. In aqueous systems, water molecules adsorb onto the electrode surface. [Pg.510]

Mass Transport. Probably the most iavestigated physical phenomenon ia an electrode process is mass transfer ia the form of a limiting current. A limiting current density is that which is controlled by reactant supply to the electrode surface and not the appHed electrode potential (42). For a simple analysis usiag the limiting current characteristics of various correlations for flow conditions ia a parallel plate cell, see Reference 43. [Pg.88]

The potential dependence of the velocity of an electrochemical phase boundary reaction is represented by a current-potential curve I(U). It is convenient to relate such curves to the geometric electrode surface area S, i.e., to present them as current-density-potential curves J(U). The determination of such curves is represented schematically in Fig. 2-3. A current is conducted to the counterelectrode Ej in the electrolyte by means of an external circuit (voltage source Uq, ammeter, resistances R and R") and via the electrode E, to be measured, back to the external circuit. In the diagram, the current indicated (0) is positive. The potential of E, is measured with a high-resistance voltmeter as the voltage difference of electrodes El and E2. To accomplish this, the reference electrode, E2, must be equipped with a Haber-Luggin capillary whose probe end must be brought as close as possible to... [Pg.40]

The first term in Eq. (3-27) represents the voltage drop between the reference electrode over the pipeline and the pipe surface. The second term represents the potential difference AU measured at the soil surface (ground level) perpendicular (directly above) to the pipeline. Average values of the values measured to the left and right of the pipeline are to be used (see Fig. 3-24) [2]. In this way stray IR components can be eliminated. The third term comprises the current densities where, in the switched-off state of the protection installation, there is a cell current J. In the normal case J = 0 and also correspondingly AU f = 0 as well as = t/ ff On... [Pg.95]

Since cathodic protection of concrete structures in the United States has been very much advanced, protection criteria have been developed [46]. They correspond to the pragmatic criteria Nos. 3 and 4 in Table 3-3 (see Section 3.3.3.1). It is assumed that the protective effect is adequate if, upon switching off the protection current, the potential becomes more than 0.1 V more positive within 4 hours. The measurements are carried out in various parts of the protected object with built-in Ag-AgCl reference electrodes or with any electrodes on the external surface. [Pg.430]

Protection current devices with potential control are described in Section 8.6 (see Figs. 8.5 and 8.6) information on potentiostatic internal protection is given in Section 21.4.2.1. In these installations the reference electrode is sited in the most unfavorable location in the protected object. If the protection criterion according to Eq. (2-39) is reached there, it can be assumed that the remainder of the surface of the object to be protected is cathodically protected. [Pg.448]

Six iron anodes are required for corrosion protection of each condenser, each weighing 13 kg. Every outflow chamber contains 14 titanium rod anodes, with a platinum coating 5 /tm thick and weighing 0.73 g. The mass loss rate for the anodes is 10 kg A a for Fe (see Table 7-1) and 10 mg A a for Pt (see Table 7-3). A protection current density of 0.1 A m is assumed for the coated condenser surfaces and 1 A m for the copper alloy tubes. This corresponds to a protection current of 27 A. An automatic potential-control transformer-rectifier with a capacity of 125 A/10 V is installed for each main condenser. Potential control and monitoring are provided by fixed zinc reference electrodes. Figure 21-2 shows the anode arrangement in the inlet chamber [9]. [Pg.469]


See other pages where Reference electrode surface is mentioned: [Pg.314]    [Pg.87]    [Pg.230]    [Pg.164]    [Pg.290]    [Pg.463]    [Pg.479]    [Pg.314]    [Pg.87]    [Pg.230]    [Pg.164]    [Pg.290]    [Pg.463]    [Pg.479]    [Pg.197]    [Pg.198]    [Pg.1939]    [Pg.1941]    [Pg.1948]    [Pg.2751]    [Pg.474]    [Pg.493]    [Pg.442]    [Pg.466]    [Pg.525]    [Pg.395]    [Pg.156]    [Pg.54]    [Pg.346]    [Pg.88]    [Pg.124]    [Pg.125]    [Pg.127]    [Pg.256]    [Pg.408]    [Pg.409]    [Pg.436]    [Pg.436]    [Pg.479]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Electrode surface

Reference electrodes

© 2024 chempedia.info