Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction varieties

H02C(CH2)2C02H. Colourless prisms m.p. 182 C, b.p. 235°C. Occurs in amber, algae, lichens, sugar cane, beets and other plants, and is formed during the fermentation of sugar, tartrates, malates and other substances by a variety of yeasts, moulds and bacteria. Manufactured by the catalytic reduction of maleic acid or by heating 1,2-dicyanoethane with acids or alkalis. Forms an anhydride when heated at 235°C. Forms both acid and neutral salts and esters. Used in the manufacture of succinic anhydride and of polyesters with polyols. [Pg.375]

A large variety of organic oxidations, reductions, and rearrangements show photocatalysis at interfaces, usually of a semiconductor. The subject has been reviewed [326,327] some specific examples are the photo-Kolbe reaction (decarboxylation of acetic acid) using Pt supported on anatase [328], the pho-... [Pg.738]

Reduction to alcohols (Section 15 2) Aide hydes are reduced to primary alcohols and ketones are reduced to secondary alcohols by a variety of reducing agents Catalytic hydrogenation over a metal catalyst and reduction with sodium borohydride or lithium aluminum hydride are general methods... [Pg.713]

Nitro groups are readily reduced to primary amines by a variety of methods Cat alytic hydrogenation over platinum palladium or nickel is often used as is reduction by iron or tin m hydrochloric acid The ease with which nitro groups are reduced is especially useful m the preparation of arylamines where the sequence ArH ArN02 ArNH2 IS the standard route to these compounds... [Pg.932]

Adiponitrile undergoes the typical nitrile reactions, eg, hydrolysis to adipamide and adipic acid and alcoholysis to substituted amides and esters. The most important industrial reaction is the catalytic hydrogenation to hexamethylenediarnine. A variety of catalysts are used for this reduction including cobalt—nickel (46), cobalt manganese (47), cobalt boride (48), copper cobalt (49), and iron oxide (50), and Raney nickel (51). An extensive review on the hydrogenation of nitriles has been recendy pubUshed (10). [Pg.220]

The vapor-phase reduction of acrolein with isopropyl alcohol in the presence of a mixed metal oxide catalyst yields aHyl alcohol in a one-pass yield of 90.4%, with a selectivity (60) to the alcohol of 96.4%. Acrolein may also be selectively reduced to yield propionaldehyde by treatment with a variety of reducing reagents. [Pg.124]

A great deal of experimental work has also been done to identify and quantify the ha2ards of explosive operations (30—40). The vulnerabiUty of stmctures and people to shock waves and fragment impact has been well estabUshed. This effort has also led to the design of protective stmctures superior to the conventional barricades which permit considerable reduction ia allowable safety distances. In addition, a variety of techniques have been developed to mitigate catastrophic detonations of explosives exposed to fire. [Pg.7]

Waving Lotions. The reagent most frequently used for the reduction of hair is thioglycolic acid [68-11-1]. Although a variety of other mercaptans have been screened (51), none has been able to match the unique combination of efficacy, safety, and low cost that is a hallmark of thioglycolic acid. [Pg.459]

Unusual reducing properties can be obtained with borohydride derivatives formed in situ. A variety of reductions have been reported, including hydrogenolysis of carbonyls and alkylation of amines with sodium borohydride in carboxyHc acids such as acetic and trifluoroacetic (38), in which the acyloxyborohydride is the reducing agent. [Pg.304]

Oxidation. Hydrogen peroxide is a strong oxidant. Most of its uses and those of its derivatives depend on this property. Hydrogen peroxide oxidizes a wide variety of organic and inorganic compounds, ranging from iodide ions to the various color bodies of unknown stmcture in ceUulosic fibers. The rate of these reactions may be quite slow or so fast that the reaction occurs on a reactive shock wave. The mechanisms of these reactions are varied and dependent on the reductive substrate, the reaction environment, and catalysis. Specific reactions are discussed in a number of general and other references (4,5,32—35). [Pg.472]

Chemical Properties. Its two functional groups permit a wide variety of chemical reactions for lactic acid. The primary classes of these reactions are oxidation, reduction, condensation, and substitution at the alcohol group. [Pg.512]

Production. Indium is recovered from fumes, dusts, slags, residues, and alloys from zinc or lead—zinc smelting. The source material itself, a reduction bullion, flue dust, or electrolytic slime intermediate, is leached with sulfuric or hydrochloric acid, the solutions are concentrated, if necessary, and cmde indium is recovered as 99+% metal. This impure indium is then refined to 99.99%, 99.999%, 99.9999%, or higher grades by a variety of classical chemical and electrochemical processes. [Pg.80]

A principal advantage of the Raman microprobe is that the optics are those of a conventional light microscope a wide variety of special-purpose objectives developed for materials and biological microscopy are available. The Raman microprobe also offers the advantage of fluorescence reduction owing to the high spatial resolution of the microscope if a region of low fluorescence can be chosen for observation. [Pg.213]

Reduction. Most ketones are readily reduced to the corresponding secondary alcohol by a variety of hydrogenation processes. The most commonly used catalysts are palladium, platinum, and nickel For example, 4-methyl-2-pentanol (methyl isobutyl carbinol) is commercially produced by the catalytic reduction of 4-methyl-2-pentanone (methyl isobutyl ketone) over nickel. [Pg.487]

Product standards may stipulate performance characteristics, dimensions, quaUty factors, methods of measurement, and tolerances and safety, health, and environmental protection specifications. These are introduced principally to provide for interchangeabiUty and reduction of variety. The latter procedure is referred to as rationalization of the product offering, ie, designation of sizes, ratings, etc, for the attribute range covered and the steps within the range. The designated steps may foUow a modular format or a preferred number sequence. [Pg.17]


See other pages where Reduction varieties is mentioned: [Pg.176]    [Pg.713]    [Pg.2912]    [Pg.380]    [Pg.872]    [Pg.191]    [Pg.209]    [Pg.476]    [Pg.1147]    [Pg.134]    [Pg.199]    [Pg.224]    [Pg.246]    [Pg.348]    [Pg.370]    [Pg.218]    [Pg.318]    [Pg.550]    [Pg.403]    [Pg.311]    [Pg.255]    [Pg.385]    [Pg.420]    [Pg.423]    [Pg.287]    [Pg.288]    [Pg.298]    [Pg.298]    [Pg.306]    [Pg.23]    [Pg.301]    [Pg.439]    [Pg.322]    [Pg.322]    [Pg.481]    [Pg.490]   
See also in sourсe #XX -- [ Pg.163 , Pg.164 , Pg.165 ]




SEARCH



Variety

© 2024 chempedia.info