Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction unsaturated compound

The disadvantages associated with the Clemmensen reduction of carbonyl compounds (see 3 above), viz., (a) the production of small amounts of carbinols and unsaturated compounds as by-products, (h) the poor results obtained with many compounds of high molecular weight, (c) the non-appUcability to furan and pyrrole compounds (owing to their sensitivity to acids), and (d) the sensitivity to steric hindrance, are absent in the modified Wolff-Kishner reduction. [Pg.511]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Other Syntheses. Acryhc acid and other unsaturated compounds can also be made by a number of classical elimination reactions. Acrylates have been obtained from the thermal dehydration of hydracryhc acid (3-hydroxypropanoic acid [503-66-2]) (84), from the dehydrohalogenation of 3-halopropionic acid derivatives (85), and from the reduction of dihalopropionates (2). These studies, together with the related characterization and chemical investigations, contributed significantly to the development of commercial organic chemistry. [Pg.155]

An even more effective homogeneous hydrogenation catalyst is the complex [RhClfPPhsfs] which permits rapid reduction of alkenes, alkynes and other unsaturated compounds in benzene solution at 25°C and 1 atm pressure (p. 1134). The Haber process, which uses iron metal catalysts for the direct synthesis of ammonia from nitrogen and hydrogen at high temperatures and pressures, is a further example (p. 421). [Pg.43]

In this chapter, we discuss free-radical substitution reactions. Free-radical additions to unsaturated compounds and rearrangements are discussed in Chapters 15 and 18, respectively. In addition, many of the oxidation-reduction reactions considered in Chapter 19 involve free-radical mechanisms. Several important types of free-radical reactions do not usually lead to reasonable yields of pure products and are not generally treated in this book. Among these are polymerizations and high-temperature pyrolyses. [Pg.896]

Prochiral aryl and dialkyl ketones are enantioselectively reduced to the corresponding alcohols using whole-cell bioconversions, or an Ir1 amino sulfide catalyst prepared in situ.695 Comparative studies show that the biocatalytic approach is the more suitable for enantioselective reduction of chloro-substituted ketones, whereas reduction of a,/ -unsaturated compounds is better achieved using the Ir1 catalyst. An important step in the total synthesis of brevetoxin B involves hydrogenation of an ester using [Ir(cod)(py) P(cy)3 ]PF6.696... [Pg.228]

This conclusion is partly true because superoxide is unable to abstract hydrogen atom even from the most active bisallylic positions of unsaturated compounds, while perhydroxyl radical abstracts H atom from linoleic, linolenic, and arachidonic fatty acids with the rate constants of 1-3 x 1031 mol-1 s-1 [24], However, the superoxide damaging activity does not originate from hydrogen atom abstraction reactions but from one-electron reduction processes, leading to the formation of hydroxyl radicals, peroxynitrite, etc, and in these reactions perhydroxyl cannot compete with superoxide. [Pg.695]

Hydrogen (reduction) alkenes, which are unsaturated compounds, add hydrogen to become saturated compounds ... [Pg.91]

The carbanions can be generated from unsaturated compounds either by reduction or by addition. [Pg.14]

In conclusion, the applicability of the transition metal catalyzed hydroformylation of easily accessible functionalized or non-functionalized unsaturated compounds is expanded by its implementation in reaction sequences, tandem reactions or domino reactions. The hydroformylation can be combined with simple functional group transformations, such as reduction or isomerization, or with C,0-, C,N- and, most importantly, C,C-bond forming reactions. It can be expected that more interesting examples and applications will be presented in the future. [Pg.102]

The electrochemical reduction of pure hydrocarbons without functional groups is almost exclusively restricted to unsaturated compounds. The reason is that aliphatic hydrocarbons have extremely low electron affinities that render their reduction impossible, despite a gain of solvation energy within the stability limits of conventional solvent-electrolyte systems. [Pg.95]

The preceding discussion has shown that the major course of the reduction of multiply unsaturated compounds can be understood in terms of a relatively small number of elementary reactions. Other reactions have been postulated for various reasons and it is obviously desirable to find criteria for judging the probable importance of the many conceivable changes. Perhaps the most important criterion is an experimental one which is coupled with the principle of minimum structural change. Thus the demonstration that 2-butyne yields, almost exclusively, cis-2-butene-2,3-du implies that the structure (A), a logical... [Pg.167]

Catalytic asymmetric reduction of unsaturated compounds is one of the most reliable methods used to synthsize the corresponding chiral saturated products. Chiral transition metal complexes repeatedly activate an organic or inorganic hydride source, and transfer the hydride to olefins, ketones, or imines from one... [Pg.1]

If the addition of hydrogen takes place in a 1,2-mode the products are oximes, hydroxylamines, amines, and carbonyl compounds resulting from the hydrolysis of the oximes [567], Oximes and carbonyl compounds also result from reductions of a,/3-unsaturated compounds with iron [569, 570] and an oxime was prepared by catalytic hydrogenation of a )S-nitrostyrene derivative over palladium in pyridine (yield 89%) [571]. [Pg.71]

Reduction and related reactions of a, -unsaturated compounds with metals in liquid ammonia. Caine, D., Org. Reactions 23,1, (1976). [Pg.257]

Tetrahydro derivatives are formed as well by the dehydrogenation (see Section 4.2.4) of higher saturated analogs, such as homoberbines 173,177b, and 202c, and by the reduction (see Section 4.3) of higher unsaturated compounds, such as 307 and 308. [Pg.111]

The other stereoselective synthesis/281 shown in Scheme 8, foresees conversion of Boc-L-Asp-OtBu 20 into the related (3-aldehyde 22 via the Weinreb amide 21 and its reduction with diisobutylaluminum hydride (DIBAL-H). Wittig condensation of 22 with the ylide derived from (3-carboxypropyl)triphenylphosphonium bromide using lithium hexamethyldisilaza-nide at —78 to 0°C, produces the unsaturated compound 23 which is catalytically hydrogenated to the protected L-a-aminosuberic acid derivative 24. Conversion of the co-carboxy group into the 9-fluorenylmethyl ester, followed by TFA treatment and reprotection of the M -amino group affords Boc-L-Asu(OFm)-OH (25). [Pg.228]

H3PO3 and H3PO4 Reductive amination oi unsaturated compounds M-P... [Pg.307]

Other types of reduction catalyzed by non-microsomal enzymes have also been described for xenobiotics. Thus, reduction of aldehydes and ketones may be carried out either by alcohol dehydrogenase or NADPH-dependent cytosolic reductases present in the liver. Sulfoxides and sulfides may be reduced by cytosolic enzymes, in the latter case involving glutathione and glutathione reductase. Double bonds in unsaturated compounds and epoxides may also be reduced. Metals, such as pentavalent arsenic, can also be reduced. [Pg.98]

The choice of catalyst applied in the hydrogenation of a certain unsaturated hydrocarbon depends on several factors, such as the reactivity of the substrate and the experimental conditions (pressure, temperature, solvent, liquid- or gas-phase reaction). Multiply unsaturated compounds may require the use of a selective catalyst attaining the reduction of only one multiple bond. The use of suitable selective catalysts and reaction conditions is also necessary to achieve stereospecific hydrogenations. [Pg.620]


See other pages where Reduction unsaturated compound is mentioned: [Pg.395]    [Pg.24]    [Pg.160]    [Pg.434]    [Pg.3]    [Pg.26]    [Pg.276]    [Pg.235]    [Pg.78]    [Pg.653]    [Pg.400]    [Pg.14]    [Pg.364]    [Pg.44]    [Pg.33]    [Pg.91]    [Pg.402]    [Pg.318]    [Pg.96]    [Pg.3]    [Pg.360]    [Pg.633]    [Pg.21]    [Pg.89]    [Pg.551]    [Pg.657]    [Pg.152]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Reduction 3,7-unsaturated

© 2024 chempedia.info