Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction carbonyl, borohydride

Many of the methods used for the preparation of mononuclear hydrides may be applied to the polynuclear systems. Base attack on metal carbonyls, which furnished one of the first methods for the production of carbonyl hydride species, is applicable to a wide range of carbonyls. Borohydride reduction leads to a variety of products, depending upon the reaction conditions, Os3(CO)12 reacting with NaBH in di-oxane under reflux to give, after 4 hours, a mixture of the anions [H30s4(C0)12] and [H2Os4(CO)i2]2 (79). The related reaction in tetra-hydrofuran for 1 hour yields the anion [HOs3(CO)n]- as the main product with minor amounts of the two tetranuclear anions. [Pg.277]

The Cannizzaro reaction, that is, the base-catalysed disproportionation of a carbonyl compound to an alcohol and a carboxylic acid, has gained some importance as an economically viable alternative to the reduction with borohydrides. However, the reaction is restricted to carbonyl compounds without any a-hydrogen, which do not undergo competing aldol reactions. Thus, mainly aromatic aldehydes are used for this kind of transformation. The protocols developed for microwave applications typically involve solvent-free conditions using alumina as the solid support. Under these conditions, a significant acceleration of the reaction was achieved. [Pg.84]

Mechanistic details involved in imine and carbonyP - reductions are undoubtedly similar, although thorough investigations of the former are lacking. Certainly, hydride transfer to the electrophilic carbon, with or without prior activation by protonation or complexation is essential for both types of ir-systems (Scheme 1). Whether or not alcohol solvents participate in imine reductions by borohydride (in the absence of added acid) to furnish the amine proton (as is the case with carbonyls) is not known and must await detailed kinetic study and analysis of the initial intermediates formed before hydrolysis. Direct, in situ, reductive amination with NaBHsCN has been attributed to initial, reversible formation (via an intermediate hydroxyamine, (1) of an iminium ion (2) from carbonyls and amines followed by rapid attack by hydride (Scheme 2). However, the inermess of an imine (partial structure 3) to the usual reductive... [Pg.26]

The Cram chelation model (sec. 4.7.B) is an example where the chelation effects of the heteroatom influence the rotamer population and, thereby, the selectivity of the reduction. Zinc borohydride [Zn(BH4)2], effectively chelates the carbonyl oxygen and alcohol oxygen atoms in the reduction of 42 and leads to intermediate 43. Transfer of hydride to the carbonyl gave primarily the anti diastereomer, 45 (4 96, 44/45). When the chelating hydroxyl group was blocked as a tert-butyldiphenylsilyl ether (in 46 - sec. 7.3.A.i), reduction with Red-Al (sec. 4.3) led to a reversal in selectivity (96 4, 47/48).The ability to chelate a heteroatom varies with the reagent used. Lithium aluminum hydride shows less selectivity, due in part to poorer coordination with the heteroatom and reduction of 42 gave a 27 73 mixture of 44 and 45,... [Pg.500]

Reductions Carbonyl compounds, including conjugated members, acid chlorides, azides, epoxides, and disulfides, are reduced. This salt (1) is a more selective reducing agent than tetrabutylammonium borohydride. [Pg.22]

Reduction. The borohydride reagent is highly selective, reducing aldehydes in the presence of ketones, conjugated carbonyl compounds to allylic alcohols, and acid chlorides o alcohols. [Pg.219]

Reduction Carbonyl groups in carbohydrates are reduced by the same methods used for aldehydes and ketones reduction with sodium borohydride or lithium aluminum hydride or by catalytic hydrogenation. [Pg.974]

Professor Fraga reported the study of diastereoselective reduction In cyclic 1,3-keto ester substrates in 2004 [1], using CaCU as additive to form complexation with 1,3-keto esters substrates to control the reduction. Sodium borohydride was added to the mixture and the selective reduction of ketone carbonyl group happened with 90 % diastereoselectivity. The transition state proposed is shown in Fig. 3.5. [Pg.86]

Reduction of carbonyl groups transfer hydrogenation, hydrosilylation, catalytic hydroboration, and reduction with borohydrides, aluminum hydrides, or boranes, in Science of Synthesis, Stereoselective Synthesis, vol. 2 (eds J.G. de Vries, G.A. Molander, and P.A. [Pg.107]

Sodium borohydride and lithium aluminum hydride react with carbonyl compounds in much the same way that Grignard reagents do except that they function as hydride donors rather than as carbanion sources Figure 15 2 outlines the general mechanism for the sodium borohydride reduction of an aldehyde or ketone (R2C=0) Two points are especially important about this process... [Pg.629]

Neither sodium borohydride nor lithium aluminum hydride reduces isolated carbon-carbon double bonds This makes possible the selective reduction of a carbonyl group m a molecule that contains both carbon-carbon and carbon-oxygen double bonds... [Pg.631]

Nucleophilic addition to carbonyl groups sometimes leads to a mixture of stereoisomeric products The direction of attack is often controlled by stenc factors with the nude ophile approaching the carbonyl group at its less hindered face Sodium borohydride reduction of 7 7 dimethylbicyclo[2 2 IJheptan 2 one illustrates this point... [Pg.734]

The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

Unusual reducing properties can be obtained with borohydride derivatives formed in situ. A variety of reductions have been reported, including hydrogenolysis of carbonyls and alkylation of amines with sodium borohydride in carboxyHc acids such as acetic and trifluoroacetic (38), in which the acyloxyborohydride is the reducing agent. [Pg.304]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

The borohydride reduction rate data are paralleled by the rate data for many other carbonyl addition reactions. In fact, for a series of ketones, most of which are cyclic, a linear free-energy correlation of the form... [Pg.471]

Borohydrides reduce a-substituted ketones to the corresponding a-substituted alcohols, and such products can be further reduced to olefins (see section VIII). Other reagents serve, through participation of the carbonyl group, to remove the substituent while leaving the ketone intact. The zinc or chromous ion reduction of a-halo ketones is an example of this second type, which is not normally useful for double bond introduction. However, when the derivative being reduced is an a,jS-epoxy ketone, the primary product is a -hydroxy ketone which readily dehydrates to the a,jS-unsaturated ketone. Since... [Pg.348]

The well-known reduction of carbonyl groups to alcohols has been refined in recent studies to render the reaction more regioselective and more stereoselective Per-fluorodiketones are reduced by lithium aluminum hydride to the corresponding diols, but the use of potassium or sodium borohydride allows isolation of the ketoalcohol Similarly, a perfluoroketo acid fluonde yields diol with lithium aluminum hydnde, but the related hydroxy acid is obtainable with potassium borohydnde [i f] (equations 46 and 47)... [Pg.308]

The carbonyl group of carbohydrates can be reduced to an alcohol function. Typical procedures include catalytic hydrogenation and sodium borohydride reduction. Lithium aluminum hydride is not suitable, because it is not compatible with the solvents (water, alcohols) that are requited to dissolve caibohydrates. The products of caibohydrate reduction aie called alditols. Because these alditols lack a car bonyl group, they aie, of course, incapable of forming cyclic hemiacetals and exist exclusively in noncyclic forms. [Pg.1052]

Reduction (Section 25.18) The carbonyl group of aldoses and ketoses is reduced by sodium borohydride or by catalytic hydrogenation. The products are called alditols. [Pg.1063]

Condensation of piperazine with 2-methoxytropone gives the addition-elimination product 12 [2]. Alkylation of the remaining secondary amino group with bromoketone 13, itself the product from acylation of dimethyl catechol, gives aminoketone 14. Reduction of the carbonyl group with sodium borohydride leads to secondaiy alcohols 15 and 16. Resolution of these two enantiomers was achieved by recrystallization of their tartrate salts to give ciladopa (16) [3],... [Pg.22]

The tosylhydrazone is prepared from the carbonyl compound and then reduced with lithium aluminium hydride, sodium borohydride or potassium borohydride. In this way D-glucose tosylhydrazone was converted into crystalline 1-deoxyglucitol by reduction with potassium borohydride... [Pg.152]


See other pages where Reduction carbonyl, borohydride is mentioned: [Pg.304]    [Pg.1037]    [Pg.81]    [Pg.420]    [Pg.243]    [Pg.1037]    [Pg.268]    [Pg.201]    [Pg.25]    [Pg.133]    [Pg.139]    [Pg.362]    [Pg.243]    [Pg.256]    [Pg.470]    [Pg.92]    [Pg.69]    [Pg.31]    [Pg.73]    [Pg.146]   
See also in sourсe #XX -- [ Pg.34 , Pg.37 , Pg.113 , Pg.125 , Pg.126 , Pg.134 ]




SEARCH



Borohydride reductions

Carbonyl compounds reduction by sodium borohydride

Carbonyl reduction

Carbonyl reduction using borohydrides

Metal carbonyls borohydride reduction

Reduction borohydrides

Reduction carbonylation

Sodium borohydride carbonyl compound reduction

Sodium borohydride, reduction of carbonyl

Sodium borohydride, reduction of carbonyl compounds

© 2024 chempedia.info