Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic hydroboration

As an alternative to the stoichiometric enantioselective hydroboration, catalytic hydroboration using chiral catalysts has been also developed for enantioselective hydroboration The catalytic hydroboration-amination methodology has been successfully applied as a one-pot reaction for the asymmetric synthesis of primary... [Pg.320]

Many different organoboranes have been developed and are in use at present to control selectivities, which makes hydroboration a particularly valuable and flexible process. A further important advantage of this method is that a wide range of functional groups tolerate hydroboration. Catalytic hydroboration, a recent development, is a new way of asymmetric hydroborations. Detailed treatment of hydroboration can be found in monographs321 323 324 331 and review papers.320 325 332-335... [Pg.316]

Certainly a major advance in synthetic chemistry during the 1980s was the development of methods for enantioselective synthesis. We have increased the level of attention to stereochemistry in the discussion of many reactions. In areas in which new stereoselective methods have been well developed, such as in aldol condensations, hydroboration, catalytic reduction, and epoxidation, we discuss these methods. [Pg.806]

Hydroboration-oxidation of a pinene (page 235) like catalytic IS stereoselective Addition takes place at the less hindered face and a single alcohol is produced in high yield (89%) Sug... [Pg.252]

One of the newer and more fmitful developments in this area is asymmetric hydroboration giving chiral organoboranes, which can be transformed into chiral carbon compounds of high optical purity. Other new directions focus on catalytic hydroboration, asymmetric aHylboration, cross-coupling reactions, and appHcations in biomedical research. This article gives an account of the most important aspects of the hydroboration reaction and transformations of its products. For more detail, monographs and reviews are available (1—13). [Pg.308]

Diborane [19287-45-7] the first hydroborating agent studied, reacts sluggishly with olefins in the gas phase (14,15). In the presence of weak Lewis bases, eg, ethers and sulfides, it undergoes rapid reaction at room temperature or even below 0°C (16—18). The catalytic effect of these compounds on the hydroboration reaction is attributed to the formation of monomeric borane complexes from the borane dimer, eg, borane-tetrahydrofuran [14044-65-6] (1) or borane—dimethyl sulfide [13292-87-0] (2) (19—21). Stronger complexes formed by amines react with olefins at elevated temperatures (22—24). [Pg.308]

There have been several reviews of asymmetric synthesis via chiral organoboranes (6,8,378,382,467—472). Asymmetric induction in the hydroboration reaction may result from the chiraHty present in the olefin (asymmetric substrate), in the reagent (asymmetric hydroboration), or in the catalyst (catalytic asymmetric hydroboration). [Pg.321]

Catalytic Asymmetric Hydroboration. The hydroboration of olefins with catecholborane (an achiral hydroborating agent) is cataly2ed by cationic rhodium complexes with enantiomericaHy pure phosphines, eg, [Rh(cod)2]BE4BINAP, where cod is 1,5-cyclooctadiene and BINAP is... [Pg.323]

Hydroboration-oxidation of a-pinene (page 235), like catalytic... [Pg.252]

The reverse reaction (formation of metal alkyls by addition of alkenes to M-H) is the basis of several important catalytic reactions such as alkene hydrogenation, hydroformylation, hydroboration, and isomerization. A good example of decomposition by y3-elimination is the first-order intramolecular reaction ... [Pg.926]

Borane 2 adds to carbon-carbon double bonds without the need of catalytic activation. This reaction has been discovered and thoroughly investigated by H. C. Browm, and is called hydroboration It permits a regioselective and stereospecific conversion of alkenes to a variety of functionalized products. [Pg.169]

With ring G in place, the construction of key intermediate 105 requires only a few functional group manipulations. To this end, benzylation of the free secondary hydroxyl group in 136, followed sequentially by hydroboration/oxidation and benzylation reactions, affords compound 137 in 75% overall yield. Acid-induced solvolysis of the benzylidene acetal in 137 in methanol furnishes a diol (138) the hydroxy groups of which can be easily differentiated. Although the action of 2.5 equivalents of tert-butyldimethylsilyl chloride on compound 138 produces a bis(silyl ether), it was found that the primary TBS ether can be cleaved selectively on treatment with a catalytic amount of CSA in MeOH at 0 °C. Finally, oxidation of the resulting primary alcohol using the Swem procedure furnishes key intermediate 105 (81 % yield from 138). [Pg.771]

The proposed mechanism for Fe-catalyzed 1,4-hydroboration is shown in Scheme 28. The FeCl2 is initially reduced by magnesium and then the 1,3-diene coordinates to the iron center (I II). The oxidative addition of the B-D bond of pinacolborane-tfi to II yields the iron hydride complex III. This species III undergoes a migratory insertion of the coordinated 1,3-diene into either the Fe-B bond to produce 7i-allyl hydride complex IV or the Fe-D bond to produce 7i-allyl boryl complex V. The ti-c rearrangement takes place (IV VI, V VII). Subsequently, reductive elimination to give the C-D bond from VI or to give the C-B bond from VII yields the deuterated hydroboration product and reinstalls an intermediate II to complete the catalytic cycle. However, up to date it has not been possible to confirm which pathway is correct. [Pg.51]

Abstract The use of A-heterocyclic carbene (NHC) complexes as homogeneous catalysts in addition reactions across carbon-carbon double and triple bonds and carbon-heteroatom double bonds is described. The discussion is focused on the description of the catalytic systems, their current mechanistic understanding and occasionally the relevant organometallic chemistry. The reaction types covered include hydrogenation, transfer hydrogenation, hydrosilylation, hydroboration and diboration, hydroamination, hydrothiolation, hydration, hydroarylation, allylic substitution, addition, chloroesterification and chloroacylation. [Pg.23]

The metal catalysed hydroboration and diboration of alkenes and alkynes (addition of H-B and B-B bonds, respectively) gives rise to alkyl- or alkenyl-boronate or diboronate esters, which are important intermediates for further catalytic transformations, or can be converted to useful organic compounds by established stoichiometric methodologies. The iyn-diboration of alkynes catalysed by Pt phosphine complexes is well-established [58]. However, in alkene diborations, challenging problems of chemo- and stereo-selectivity control stiU need to be solved, with the most successful current systems being based on Pt, Rh and An complexes [59-61]. There have been some recent advances in the area by using NHC complexes of Ir, Pd, Pt, Cu, Ag and Au as catalysts under mild conditions, which present important advantages in terms of activity and selectivity over the established catalysts. [Pg.38]

A catalytic cycle proposed for the metal-phosphine complexes involves the oxidative addition of borane to a low-valent metal yielding a boryl complex (35), the coordination of alkene to the vacant orbital of the metal or by displacing a phosphine ligand (35 —> 36) leads to the insertion of the double bond into the M-H bond (36 —> 37) and finally the reductive elimination to afford a hydroboration product (Scheme 1-11) [1]. A variety of transition metal-boryl complexes have been synthesized via oxidative addition of the B-H bond to low-valent metals to investigate their role in cat-... [Pg.13]

Combining catalytic enantioselective hydroboration (see p. 342) with animation has provided certain amines with good enantioselectivity. In this procedure the catechol group is replaced by methyl prior to the animation step. [Pg.351]

Formal hydration of the double bond appeared by the hydroboration-oxidation sequence. Desymmetrization reactions with catalytic asymmetric hydroboration are not restricted to norbornene or nonfunctionalized substrates and can be successfully applied to meso bicyclic hydrazines. In the case of 157, hydroxy derivative 158 is formed with only moderate enantioselectivity both using Rh or Ir precatalysts. Interestingly, a reversal of enantioselectivity is observed for the catalytic desymmetrization reaction by exchanging these two transition metals. Rh-catalyzed hydroboration involves a metal-H insertion, and a boryl migration is involved when using an Ir precatalyst (Equation 17) <2002JA12098, 2002JOC3522>. [Pg.392]

Mannig and Noth reported the first example of rhodium-catalyzed hydroboration to C=C bonds in 1985.4 Catecholborane reacts at room temperature with 5-hexene-2-one at the carbonyl double bond when the reaction was run in the presence of 5mol.% Wilkinson s catalyst [Rh(PPh3)3Cl], addition of the B—H bond across the C=C double bond was observed affording the anti-Markovnikoff ketone as the major product (Scheme 2). Other rhodium complexes showed good catalytic properties ([Rh(COD)Cl2]2, [ Rh(PPh3)2(C O )C 1], where... [Pg.266]

The catalytic cycle for hydroboration is now widely accepted and direct examples of several intermediate species have been isolated and well characterized (Scheme 3).5-7 These now include (j-borane complexes, which have in some instances been found to be catalytic precursors for hydroboration.8-10 Oxidative addition of an H—B bond to a coordinatively unsaturated metal fragment... [Pg.266]


See other pages where Catalytic hydroboration is mentioned: [Pg.49]    [Pg.61]    [Pg.112]    [Pg.112]    [Pg.49]    [Pg.61]    [Pg.112]    [Pg.112]    [Pg.311]    [Pg.312]    [Pg.323]    [Pg.323]    [Pg.219]    [Pg.315]    [Pg.12]    [Pg.226]    [Pg.1007]    [Pg.101]    [Pg.41]    [Pg.41]    [Pg.13]    [Pg.21]    [Pg.21]    [Pg.302]    [Pg.343]    [Pg.265]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.11 , Pg.14 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.11 ]




SEARCH



© 2024 chempedia.info