Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox oxidation systems

The action of redox metal promoters with MEKP appears to be highly specific. Cobalt salts appear to be a unique component of commercial redox systems, although vanadium appears to provide similar activity with MEKP. Cobalt activity can be supplemented by potassium and 2inc naphthenates in systems requiring low cured resin color lithium and lead naphthenates also act in a similar role. Quaternary ammonium salts (14) and tertiary amines accelerate the reaction rate of redox catalyst systems. The tertiary amines form beneficial complexes with the cobalt promoters, faciUtating the transition to the lower oxidation state. Copper naphthenate exerts a unique influence over cure rate in redox systems and is used widely to delay cure and reduce exotherm development during the cross-linking reaction. [Pg.319]

Simplified nitrile mbber polymerization recipes are shown in Table 2 for "cold" and "hot" polymerization. Typically, cold polymerization is carried out at 5°C and hot at 30°C. The original technology for emulsion polymerization was similar to the 30°C recipe, and the redox initiator system that allowed polymerization at lower temperature was developed shortiy after World War II. The latter uses a reducing agent to activate the hydroperoxide initiator and soluble iron to reactivate the system by a reduction—oxidation mechanism as the iron cycles between its ferrous and ferric states. [Pg.519]

Redox initiation is commonly employed in aqueous emulsion polymerization. Initiator efficiencies obtained with redox initiation systems in aqueous media are generally low. One of the reasons for this is the susceptibility of the initially formed radicals to undergo further redox chemistry. For example, potential propagating radicals may be oxidized to carbonium ions (Scheme 3.44). The problem is aggravated by the low solubility of the monomers (e.g. M VIA. S) in the aqueous phase. [Pg.95]

See also Oxidation, Reduction). Some dissolved substances in water occur either in an oxidized or a reduced form, and their state can be changed by either the acquisition of electrons (reduction) or the loss of electrons (oxidation). This transfer system is an reduction-oxidation system, or redox. (Red. - Oxid. n+ = ne—, where n is number of electrons involved), and can be used to measure and... [Pg.752]

Table 11-1. Some redox potentials of special interest in mammalian oxidation systems. Table 11-1. Some redox potentials of special interest in mammalian oxidation systems.
To undertake oxidation of both cyclic and acyclic hydroxylamines to nitrones, an electrochemical oxidative system has been developed, where WC>42-/WC>52-are used as cathodic redox mediators and Br /Br2 or I—/I2 as anodic redox mediators (129-131). [Pg.146]

Since S03/H2S04 is clearly not the most desirable system for industrial applications, a formidable challenge is to find an oxidant that oxidizes Pt(II) much faster than S03 does, operates in an environmentally friendly solvent, and can be (like SVI/SIV) reoxidized by oxygen from air. Ideally, the reduced oxidant would get reoxidized in a continuous process, such that the oxidant acts as a redox mediator. In addition, the redox behavior has to be tuned such that the platinum(II) alkyl intermediate would be oxidized but the platinum(II) catalyst would not be completely oxidized. Such a system that efficiently transfers oxidation equivalents from oxygen to Pt(II) would be highly desirable. A redox mediator system based on heteropolyacids has been reported for the Pt-catalyzed oxidation of C-H bonds by 02, using Na8HPMo6V6O40... [Pg.302]

Due to the presence of interactions, the apparent redox potential of a redox couple inside a polyelectrolyte film can differ from that of the isolated redox couple in solution (i.e. the standard formal redox potential) [121]. In other words, the free energy required to oxidize a mole of redox sites in the film differs from that needed in solution. One particular case is when these interations have an origin in the presence of immobile electrostatically charged groups in the polymer phase. Under such conditions, there is a potential difference between this phase and the solution (reference electrode in the electrolyte), knovm as the Donnan or membrane potential that contributes to the apparent potential of the redox couple. The presence of the Donnan potential in redox polyelectrolyte systems was demonstrated for the first time by Anson [24, 122]. Considering only this contribution to peak position, we can vwite ... [Pg.73]

As was mentioned before, charge compensation during oxidation in redox polyelectrolyte systems can be achieved by anion uptake or cation release. For example, for a PAH-Os/PVS-modified eledrode, we can write ... [Pg.84]

Figure 5. Oxidation of methanol to carbon dioxide by a three-enzyme system consisting of alcohol (ADH), aldehyde (AldDH), and formate (FDH) dehydrogenases. Each enzyme is NAD+-dependent, and the NAD+ is regenerated by the anode via a redox mediator system. Redrawn with permission from ref 82. Copyright 1998 Elsevier Science S.A. Figure 5. Oxidation of methanol to carbon dioxide by a three-enzyme system consisting of alcohol (ADH), aldehyde (AldDH), and formate (FDH) dehydrogenases. Each enzyme is NAD+-dependent, and the NAD+ is regenerated by the anode via a redox mediator system. Redrawn with permission from ref 82. Copyright 1998 Elsevier Science S.A.
The effect of reducing conditions on the solubility of an iron oxide can be found by combining the appropriate dissolution equations with the redox equation to obtain the concentration of the Fe" species released. In the Fe"/Fe oxide system, protons are always involved because the state of hydrolysis of the Fe is changed. For goethite, for example. [Pg.209]

The adipic acid process we have developed involves butadiene oxidative carbonylation in the presence of methanol, a l, l-dimethoxycyclohexane dehydration agent, and a palladium(ll)/ copper(ll) redox catalyst system (Equation 1.). The reaction sequence includes an oxycarbonylation, hydrogenation and hydrolysis step(17-19). The net result is utilization of butadiene, the elements of synthesis gas, l, -dimethoxycyclohexane and air to give adipic acid, cyclohexanone and methanol. [Pg.79]

Goals and five limitations in conjunction with the development of selective catalytic homogeneous oxidation systems are evaluated. Systems are presented that address several of the problems or goals. One involves oxidation of alkenes by hypochlorite catalyzed by oxidatively resistant d-electron-transition-metal-substituted (TMSP) complexes. A second involves oxidation of alkenes by H2O2 catalyzed by specific TMSP complexes, and a third addresses functionalization of redox active polyoxometalate complexes with organic groups. [Pg.67]

In the development of effective catalytic oxidation systems, there is a qualitative correlation between the desirability of the net or terminal oxidant, (OX in equation 1 and DO in equation 2) and the complexity of its chemistry and the difficulty of its use. The desirability of an oxidant is inversely proportional to its cost and directly proportional to the selectivity, rate, and stability of the associated oxidation reaction. The weight % of active oxygen, ease of deployment, and environmental friendliness of the oxidant are also key issues. Pertinent data for representative oxidants are summarized in Table I (4). The most desirable oxidant, in principle, but the one with the most complex chemistry, is O2. The radical chain or autoxidation chemistry inherent in 02-based organic oxidations, whether it is mediated by redox active transition metal ions, nonmetal species, metal oxide surfaces, or other species, is fascinatingly complex and represents nearly a field unto itself (7,75). Although initiation, termination, hydroperoxide breakdown, concentration dependent inhibition... [Pg.69]

Single and mixed metal oxide systems redox pathways and anion deficiency... [Pg.82]

Redox Reactions and Valence States. The proposed reduction of Tc and U to the tetravalent state is indirectly indicated from the distribution measurements in non-oxidizing systems (c.f. Figure 2 and Table VII). By the addition of 10-20 mg/1 of Fe (c.f. Table II) a drastic increase of the distribution coefficient was observed both for Tc and U. Minerals like magnetite and chlorite also seem to have some reducing effect even after a short contact time. [Pg.65]

The counterpart of anodically electrocatalyzed oxidation by redox oxides, namely the cathodic reduction of organic substrates by surface-coup led redox system with sufficiently negative redox potential, is almost unknown. Beck reports that specially prepared TiO coating on Ti-electrodes can be reduced cathodically and that the electrogenerated Ti(III) and Ti(II) species do in fact reduce nitrobenzene to aniline (207). [Pg.159]


See other pages where Redox oxidation systems is mentioned: [Pg.497]    [Pg.75]    [Pg.196]    [Pg.137]    [Pg.209]    [Pg.253]    [Pg.440]    [Pg.582]    [Pg.644]    [Pg.710]    [Pg.664]    [Pg.125]    [Pg.69]    [Pg.502]    [Pg.199]    [Pg.44]    [Pg.741]    [Pg.738]    [Pg.60]    [Pg.28]    [Pg.189]    [Pg.190]    [Pg.91]    [Pg.312]    [Pg.31]    [Pg.32]    [Pg.165]    [Pg.645]    [Pg.293]    [Pg.294]    [Pg.301]    [Pg.33]   


SEARCH



Oxidation systems

Oxidative redox

Oxidative systems

Oxide systems

Redox oxidations

Redox system

© 2024 chempedia.info