Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recycle residue, processes

The flash drum in Figure 20.9 illustrates a situation where a stream containing a binary mixture of two components, A and B, is flashed through a valve and separated in a flash drum into an overhead vapw stream and a residual liquid product stream. The hquid in the drum is cooled by external heat exchange with hquid recycle. This process is modeled with 11 variables F,-, T, Q, F, Pf h, Tf, Fv, y, Fi, and x. Two variables are considered to be extemaUy defined, T and C. The model involves five equations a... [Pg.689]

Adherent Technologies Inc. [8] has developed a process for the reclamation of carbon fibers from carbon/epoxy composites. It has studied the depolymerization of thermoset carbon fiber reinforced epoxy matrix composites using a low temperature (20 min at 325°Q catalytic tertiary recycling reclamation process and has been able to obtain a product with 99.8% carbon and 0.2% residual resin, with only a loss of about 8.6% in fiber tensile strength. The process can be economically viable, provided sufficient scrap feedstock is available. Possible applications for the recovered fiber include thermoplastic and thermoset molding compounds. [Pg.1046]

Page, H., Shortis, L. P. and Dukes, J. A. The processing of uranium ore concentrates and recycle residues to purified uranyl nitrate solution at Springfields. Trans. Inst. Chem. Eng. 38, No. 4, 184 (1960). [Pg.189]

Sutcu, M. Akkurt, S. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 2009, 35, 2625-2631. [Pg.51]

Insulation Boa.rd. The panel products known as insulation board were the earliest commodity products made from fibers or particles in the composite panel area. These are fiber-base products with a density less than 500 kg/m. Early U.S. patents were obtained in 1915 and production began soon thereafter. The initial production used wood fiber as a raw material, but later products were made of recycled paper, bagasse (sugar cane residue), and straw. Schematics of the two major processes still ia use are shown ia Figure 4. [Pg.385]

A schematic of the MGCC process is shown in Figure 9. The mixed Cg aromatic feed is sent to an extractor (unit A) where it is in contact with HF—BF and hexane. The MX—HF—BF complex is sent to the decomposer (unit B) or the isomerization section (unit D). In the decomposer, BF is stripped and taken overhead from a condensor—separator (unit C), whereas HF in hexane is recycled from the bottom of C. Recovered MX is sent to column E for further purification. The remaining Cg aromatic compounds and hexane are sent to raffinate column E where residual BE and HE are separated, as well as hexane for recycle. Higher boiling materials are rejected in column H, and EB and OX are recovered in columns I and J. The overhead from J is fed to unit K for PX separation. The raffinate or mother Hquor is then recycled for isomerization. [Pg.420]

Catalyst recovery is a major operational problem because rhodium is a cosdy noble metal and every trace must be recovered for an economic process. Several methods have been patented (44—46). The catalyst is often reactivated by heating in the presence of an alcohol. In another technique, water is added to the homogeneous catalyst solution so that the rhodium compounds precipitate. Another way to separate rhodium involves a two-phase Hquid such as the immiscible mixture of octane or cyclohexane and aliphatic alcohols having 4—8 carbon atoms. In a typical instance, the carbonylation reactor is operated so the desired products and other low boiling materials are flash-distilled. The reacting mixture itself may be boiled, or a sidestream can be distilled, returning the heavy ends to the reactor. In either case, the heavier materials tend to accumulate. A part of these materials is separated, then concentrated to leave only the heaviest residues, and treated with the immiscible Hquid pair. The rhodium precipitates and is taken up in anhydride for recycling. [Pg.78]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]

A flow diagram of the solvent-refined coal or SRC process is shown ia Figure 12. Coal is pulverized and mixed with a solvent to form a slurry containing 25—35 wt % coal. The slurry is pressurized to ca 7 MPa (1000 psig), mixed with hydrogen, and heated to ca 425°C. The solution reactions are completed ia ca 20 min and the reaction product flashed to separate gases. The Hquid is filtered to remove the mineral residue (ash and undissolved coal) and fractionated to recover the solvent, which is recycled. [Pg.90]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

British Coal Corp. is developing a gasoline-from-coal process at a faciUty at Point of Ayr (Scotiand). This process involves treatment with Hquid recycle solvents, digestion at 450—500°C, filtration to separate unconverted residues, and separation into two fractions. The lighter fraction is mildly hydrotreated, and the heavier one is hydrocracked (56). [Pg.160]

Polymerization in Hquid monomer was pioneered by RexaH Dmg and Chemical and Phillips Petroleum (United States). In the RexaH process, Hquid propylene is polymerized in a stirred reactor to form a polymer slurry. This suspension is transferred to a cyclone to separate the polymer from gaseous monomer under atmospheric pressure. The gaseous monomer is then compressed, condensed, and recycled to the polymerizer (123). In the Phillips process, polymerization occurs in loop reactors, increasing the ratio of available heat-transfer surface to reactor volume (124). In both of these processes, high catalyst residues necessitate post-reactor treatment of the polymer. [Pg.414]

Gas-phase polymerization of propylene was pioneered by BASF, who developed the Novolen process which uses stirred-bed reactors (Fig. 8) (125). Unreacted monomer is condensed and recycled to the polymerizer, providing additional removal of the heat of reaction. As in the early Hquid-phase systems, post-reactor treatment of the polymer is required to remove catalyst residues (126). The high content of atactic polymer in the final product limits its usefiilness in many markets. [Pg.414]

The purified acid is recovered from the loaded organic stream by contacting with water in another countercurrent extraction step. In place of water, an aqueous alkafl can be used to recover a purified phosphate salt solution. A small portion of the purified acid is typically used in a backwashing operation to contact the loaded organic phase and to improve the purity of the extract phase prior to recovery of the purified acid. Depending on the miscibility of the solvent with the acid, the purified acid and the raffinate may be stripped of residual solvent which is recycled to the extraction loop. The purified acid can be treated for removal of residual organic impurities, stripped of fluoride to low (10 ppm) levels, and concentrated to the desired P2 s Many variations of this basic scheme have been developed to improve the extraction of phosphate and rejection of impurities to the raffinate stream, and numerous patents have been granted on solvent extraction processes. [Pg.328]

Water formed in the reaction as well as some undesirable by-products must be removed from the acetic acid solvent. Therefore, mother Hquor from the filter is purified in a residue still to remove heavies, and in a dehydration tower to remove water. The purified acetic acid from the bottom of the dehydration tower is recycled to the reactor. The water overhead is sent to waste treatment, and the residue still bottoms can be processed for catalyst recovery. Alternatively, some mother Hquor from the filter can be recycled directiy to the reactor. [Pg.488]


See other pages where Recycle residue, processes is mentioned: [Pg.38]    [Pg.869]    [Pg.23]    [Pg.86]    [Pg.224]    [Pg.218]    [Pg.222]    [Pg.294]    [Pg.298]    [Pg.111]    [Pg.172]    [Pg.179]    [Pg.499]    [Pg.346]    [Pg.356]    [Pg.17]    [Pg.134]    [Pg.78]    [Pg.195]    [Pg.503]    [Pg.47]    [Pg.467]    [Pg.47]    [Pg.159]    [Pg.22]    [Pg.64]    [Pg.206]    [Pg.241]    [Pg.413]    [Pg.414]    [Pg.415]    [Pg.415]    [Pg.416]    [Pg.234]    [Pg.473]   


SEARCH



Plutonium residue recycle processes

Processing recycling

Recycle processes

Recycling process

Residue recycling

© 2024 chempedia.info