Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Noncatalytic Reactors

Fixed-bed noncatalytic reactors. Fixed-bed reactors can be used to react a gas and a solid. For example, hydrogen sulfide can be removed from fuel gases by reaction with ferric oxide ... [Pg.56]

Fixed-bed reactors in the form of gas absorption equipment are used commonly for noncatalytic gas-liquid reactions. Here the packed bed serves only to give good contact between the gas and liquid. Both cocurrent and countercurrent operations are used. Countercurrent operation gives the highest reaction rates. Cocurrent operation is preferred if a short liquid residence time is required. [Pg.58]

Fluidized bed noncatalytic reactors. Fluidized heds are also suited to gas-solid noncatalytic reactions. All the advantages described earlier for gas-solid catalytic reactions apply. As an example. [Pg.59]

Pyrolysis of chlorodifluoromethane is a noncatalytic gas-phase reaction carried out in a flow reactor at atmospheric or sub atmospheric pressure yields can be as high as 95% at 590—900°C. The economics of monomer production is highly dependent on the yields of this process. A significant amount of hydrogen chloride waste product is generated during the formation of the carbon—fluorine bonds. [Pg.348]

Another hydrogenation process utilizes internally generated hydrogen for hydroconversion in a single-stage, noncatalytic, fluidized-bed reactor (41). Biomass is converted in the reactor, which is operated at about 2.1 kPa, 800°C, and residence times of a few minutes with steam-oxygen injection. About 95% carbon conversion is anticipated to produce a medium heat value (MHV) gas which is subjected to the shift reaction, scmbbing, and methanation to form SNG. The cold gas thermal efficiencies are estimated to be about 60%. [Pg.25]

Thermochemical Liquefaction. Most of the research done since 1970 on the direct thermochemical Hquefaction of biomass has been concentrated on the use of various pyrolytic techniques for the production of Hquid fuels and fuel components (96,112,125,166,167). Some of the techniques investigated are entrained-flow pyrolysis, vacuum pyrolysis, rapid and flash pyrolysis, ultrafast pyrolysis in vortex reactors, fluid-bed pyrolysis, low temperature pyrolysis at long reaction times, and updraft fixed-bed pyrolysis. Other research has been done to develop low cost, upgrading methods to convert the complex mixtures formed on pyrolysis of biomass to high quaHty transportation fuels, and to study Hquefaction at high pressures via solvolysis, steam—water treatment, catalytic hydrotreatment, and noncatalytic and catalytic treatment in aqueous systems. [Pg.47]

Chlorination of Ethylene Dichloride. Tetrachloroethylene and trichloroethylene can be produced by the noncatalytic chlorination of ethylene dichloride [107-06-2] (EDC) or other two-carbon (C2) chlorinated hydrocarbons. This process is advantageous when there is a feedstock source of mixed C2 chlorinated hydrocarbons from other processes and an outlet for the by-product HCl stream. Product ratios of tri- and tetrachloroethylene are controlled by adjusting the CI2 type="subscript">2 EDC ratio to the reactor. Partially chlorinated by-products are recycled to the chlorinator. The primary reactions are... [Pg.28]

Tubular reactors are used for reactions involving a gas and a liquid. In this arrangement, the gas phase is dispersed as bubbles at the bottom of a tubular vessel. The bubbles then rise through the continuous liquid phase that flows downwards as shown in Figure 4-14. An example of this process is the removal of organic pollutants from water by noncatalytic oxidation with pure oxygen. [Pg.239]

The calcium bisulfite acid used in the manufacture of sulfite cellulose is the product of reaction between gaseous sulfur dioxide, liquid water, and limestone. The reaction is normally carried out in trickle-bed reactors by the so-called Jenssen tower operation (E3). The use of gas-liquid fluidized beds has been suggested for this purpose (V7). The process is an example of a noncatalytic process involving three phases. [Pg.76]

A glib generalization is that the design equations for noncatalytic fluid-solid reactors can be obtained by combining the intrinsic kinetics with the appropriate... [Pg.418]

Agitated reactor (possibly with catalyst particles) Catalytic and noncatalytic Reactions, polymerizations (special agitator required) High transport rates, convenient to operate, easy variation of parameters, most versatile Catalyst erosion... [Pg.307]

Fio. 15. Variation of S02 conversion with time within a half cycle based on simulation of the reactor in Fig. 14 and for the conditions given in that figure with inlet SO2 = 2.62 vol%. Curve 1, full 1.4-m bed filled with catalyst curve 2,0.1-m regions filled with noncatalytic packing at both ends of the catalyst bed curve 3,0.2-m regions instead of 0.1-m ones. (Figure adapted from Xiao and Yuan, 19%, with permission of the authors.)... [Pg.242]

Two fixed-bed reactors can be used in parallel, one reacting and the other regenerating. However, there are many disadvantages in carrying out this type of reaction in a packed bed. The operation is not under steady state conditions, and this can present control problems. Eventually, the bed must be taken off line to replace the solid. Fluidized beds (to be discussed later) are usually preferred for gas-solid noncatalytic reactions. [Pg.130]

Fluidized bed reactors were first employed on a large scale for the catalytic cracking of petroleum fractions, but in recent years they have been employed for an increasingly large variety of reactions, both catalytic and non-catalytic. The catalytic reactions include the partial oxidation of naphthalene to phthalic anhydride and the formation of acrylonitrile from propylene, ammonia, and air. The noncatalytic applications include the roasting of ores and Tie fluorination of uranium oxide. [Pg.429]

In the noncatalytic studies, the space time r through the reactor was 15.3 s, with an inlet... [Pg.450]

This chapter is devoted to fixed-bed catalytic reactors (FBCR), and is the first of four chapters on reactors for multiphase reactions. The importance of catalytic reactors in general stems from the fact that, in the chemical industry, catalysis is the rule rather than the exception. Subsequent chapters deal with reactors for noncatalytic fluid-solid reactions, fluidized- and other moving-particle reactors (both catalytic and noncatalytic), and reactors for fluid-fluid reactions. [Pg.512]

In this chapter, we develop matters relating to the process design or analysis of reactors for fluid-solid noncatalytic reactions that is, for reactions in which the solid is a reactant. To construct reactor models, we make use of ... [Pg.552]

Chapter 22 Reactors for Fluid-Solid (Noncatalytic) Reactions... [Pg.554]


See other pages where Noncatalytic Reactors is mentioned: [Pg.365]    [Pg.421]    [Pg.348]    [Pg.343]    [Pg.508]    [Pg.512]    [Pg.523]    [Pg.509]    [Pg.483]    [Pg.413]    [Pg.665]    [Pg.255]    [Pg.49]    [Pg.49]    [Pg.64]    [Pg.138]    [Pg.141]    [Pg.21]    [Pg.21]    [Pg.286]    [Pg.290]    [Pg.552]   


SEARCH



© 2024 chempedia.info