Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor moving-particle

This chapter is devoted to fixed-bed catalytic reactors (FBCR), and is the first of four chapters on reactors for multiphase reactions. The importance of catalytic reactors in general stems from the fact that, in the chemical industry, catalysis is the rule rather than the exception. Subsequent chapters deal with reactors for noncatalytic fluid-solid reactions, fluidized- and other moving-particle reactors (both catalytic and noncatalytic), and reactors for fluid-fluid reactions. [Pg.512]

Fluidized-Bed and Other Moving-Particle Reactors for Fluid-Solid Reactions... [Pg.569]

In this chapter, we consider reactors for fluid-solid reactions in which the solid particles are in motion (relative to the wall of the vessel) in an arbitrary pattern brought about by upward flow of the fluid. Thus, the solid particles are neither in ideal flow, as in the treatment in Chapter 22, nor fixed in position, as in Chapter 21. We focus mainly on the fluidized-bed reactor as an important type of moving-particle reactor. Books dealing with fluidization and fluidized-bed reactors include those by Kunii and Levenspiel (1991), Yates (1983), and Davidson and Harrison (1963). [Pg.569]

After introducing some types of moving-particle reactors, their advantages and disadvantages, and examples of reactions conducted in them, we consider particular design features. These relate to fluid-particle interactions (extension of the treatment in Chapter 21) and to the complex flow pattern of fluid and solid particles. The latter requires development of a hydrodynamic model as a precursor to a reactor model. We describe these in detail only for particular types of fluidized-bed reactors. [Pg.569]

When a chemical reaction occurs in the system, each of these types of behavior gives rise to a corresponding type of reactor. These range from a fixed-bed reactor (Chapter 21-not a moving-particle reactor), to a fluidized-bed reactor without significant carryover of solid particles, to a fast-fluidized-bed reactor with significant carryover of particles, and ultimately a pneumatic-transport or transport-riser reactor in which solid particles are completely entrained in the rising fluid. The reactors are usually operated commercially with continuous flow of both fluid and solid phases. Kunii and Levenspiel (1991, Chapter 2) illustrate many industrial applications of fluidized beds. [Pg.570]

Reactions in moving-particle reactors in general, and in fluidized-bed reactors in particular, may be catalytic or noncatalytic. That is, the particles may be catalyst particles or reactant particles. Examples are as follows ... [Pg.572]


See other pages where Reactor moving-particle is mentioned: [Pg.388]    [Pg.570]    [Pg.571]    [Pg.573]    [Pg.573]    [Pg.574]   
See also in sourсe #XX -- [ Pg.512 , Pg.569 , Pg.570 , Pg.571 , Pg.572 , Pg.573 ]




SEARCH



FLUIDIZED-BED AND OTHER MOVING-PARTICLE REACTORS FOR FLUID-SOLID REACTIONS

Particles reactors

© 2024 chempedia.info