Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactors continuously stirred tank tubular

A useful classification of lands of reaclors is in terms of their concentration distributions. The concentration profiles of certain limiting cases are illustrated in Fig. 7-3 namely, of batch reactors, continuously stirred tanks, and tubular flow reactors. Basic types of flow reactors are illustrated in Fig. 7-4. Many others, employing granular catalysts and for multiphase reactions, are illustratea throughout Sec. 23. The present material deals with the sizes, performances and heat effects of these ideal types. They afford standards of comparison. [Pg.695]

A typical chemical plant flowsheet has a mixture of multiple units connected both in series and in parallel. As noted in the previous chapter, the common topology consists of reaction sections and separation sections. Streams of fresh reactants enter the plant by being fed into the reaction section (or sometimes into the separation section) through a heat exchanger network. Here the chemical transformations occur to produce the desired species in one or more of a potentially wide array of reactor types continuous stirred tank, tubular, packed bed, fluidized bed, sparged, slurry, trickle bed, etc. [Pg.16]

Bench-scale kinetic experiments can be conducted in batch, continuous stirred-tank, tubular plug-flow, or differential reactors. The last of these can be operated with once-through flow or recycle. The advantages and disadvantages of the various types are discussed in Section 3.1. [Pg.58]

Also, polymerization reactions are carried out in a variety of reactors including agitated batch reactors, continuous stirred tank reactors (CSTR), multizone autoclaves, loop reactors, tubular reactors, fluidized bed reactors, and a combination of these reactors. [Pg.2336]

Most chemical processes involve two important operations (reaction and separalion) that are typically carried out in different sections of the plant and use different equipment. The reaction section of the process can use several types of reactors [continuous stirred-tank reactor (CSTR), tubular, or batch] and operate under a wide variety of conditions (catalyzed, adiabatic, cooled or heated, single phase, multiple phases, etc.). The separation section can have several types of operations (distillation, extraction, crystallization, adsorption, etc.), with distillation being by far the most commonly used method. Recycle streams between the two sections of these conventional multiunit flowsheets are often incorporated in the process for a variety of reasons to improve conversion and yield, to minimize the production of undesirable byproducts, to improve energy efficiency, and to improve dynamic controllability. [Pg.599]

In previous studies, the main tool for process improvement was the tubular reactor. This small version of an industrial reactor tube had to be operated at less severe conditions than the industrial-size reactor. Even then, isothermal conditions could never be achieved and kinetic interpretation was ambiguous. Obviously, better tools and techniques were needed for every part of the project. In particular, a better experimental reactor had to be developed that could produce more precise results at well defined conditions. By that time many home-built recycle reactors (RRs), spinning basket reactors and other laboratory continuous stirred tank reactors (CSTRs) were in use and the subject of publications. Most of these served the original author and his reaction well but few could generate the mass velocities used in actual production units. [Pg.279]

Reactors may be operated batchwise or continuously, e.g. in tubular, tubes in shell (with or without internal catalyst beds), continuous stirred tank or fluidized bed reactors. Continuous reactors generally offer the advantage of low materials inventory and reduced variation of operating parameters. Recycle of reactants, products or of diluent is often used with continuous reactors, possibly in conjunction with an external heat exchanger. [Pg.244]

There are a variety of ways of accomplishing a particular unit operation. Alternative types of process equipment have different inherently safer characteristics such as inventory, operating conditions, operating techniques, mechanical complexity, and forgiveness (i.e., the process/unit operation is inclined to move itself toward a safe region, rather than unsafe). For example, to complete a reaction step, the designer could select a continuous stirred tank reactor (CSTR), a small tubular reactor, or a distillation tower to process the reaction. [Pg.67]

There are three idealized flow reactors fed-batch or semibatch, continuously stirred tank, and the plug flow tubular. Each of these is pictured in Figure 1. The fed-batch and continuously stirred reactors are both taken as being well mixed. This means that there is no spatial dependence in the concentration variables for each of the components. At any point within the reactor, each component has the same concentration as it does anywhere else. The consequence... [Pg.363]

Various reactor combinations are used. For example, the product from a relatively low solids batch-mass reactor may be transferred to a suspension reactor (for HIPS), press (for PS), or unagitated batch tower (for PS) for finishing. In a similar fashion, the effluent from a continuous stirred tank reactor (CSTR) may be transferred to a tubular reactor or an unagitated or agitated tower for further polymerization before devolatilization. [Pg.72]

This section is concerned with batch, semi-batch, continuous stirred tanks and continuous stirred-tank-reactor cascades, as represented in Fig. 3.1 Tubular chemical reactor systems are discussed in Chapter 4. [Pg.129]

For a few highly idealized systems, the residence time distribution function can be determined a priori without the need for experimental work. These systems include our two idealized flow reactors—the plug flow reactor and the continuous stirred tank reactor—and the tubular laminar flow reactor. The F(t) and response curves for each of these three types of well-characterized flow patterns will be developed in turn. [Pg.392]

Fig. 1. Types of reactor, (a) Batch reactor. All the reactants are added at the beginning of the reaction and the products are removed at the end. (b) Continuous stirred tank. Reactants are fed to the reactor and products removed continuously, (c) Tubular reactor. Products are fed to the inlet, reaction occurs as the stream flows down the tube and products emerge at the exit. Fig. 1. Types of reactor, (a) Batch reactor. All the reactants are added at the beginning of the reaction and the products are removed at the end. (b) Continuous stirred tank. Reactants are fed to the reactor and products removed continuously, (c) Tubular reactor. Products are fed to the inlet, reaction occurs as the stream flows down the tube and products emerge at the exit.
Chapter 1 reviews the concepts necessary for treating the problems associated with the design of industrial reactions. These include the essentials of kinetics, thermodynamics, and basic mass, heat and momentum transfer. Ideal reactor types are treated in Chapter 2 and the most important of these are the batch reactor, the tubular reactor and the continuous stirred tank. Reactor stability is considered. Chapter 3 describes the effect of complex homogeneous kinetics on reactor performance. The special case of gas—solid reactions is discussed in Chapter 4 and Chapter 5 deals with other heterogeneous systems namely those involving gas—liquid, liquid—solid and liquid—liquid interfaces. Finally, Chapter 6 considers how real reactors may differ from the ideal reactors considered in earlier chapters. [Pg.300]

The chemical reactor is the unif in which chemical reactions occur. Reactors can be operated in batch (no mass flow into or out of the reactor) or flow modes. Flow reactors operate between hmits of completely unmixed contents (the plug-flow tubular reactor or PFTR) and completely mixed contents (the continuous stirred tank reactor or CSTR). A flow reactor may be operated in steady state (no variables vary with time) or transient modes. The properties of continuous flow reactors wiU be the main subject of this course, and an alternate title of this book could be Continuous Chemical Reactors. The next two chapters will deal with the characteristics of these reactors operated isothermaUy. We can categorize chemical reactors as shown in Figure 2-8. [Pg.51]

Figure 11.9 Different arrangements and modes of operation for membrane bioreactors Continuous Stirred Tank Reactor (CSTR) with recirculation arrangement (a), dead-end cell (b), tubular with entrapped enzyme (c). Figure 11.9 Different arrangements and modes of operation for membrane bioreactors Continuous Stirred Tank Reactor (CSTR) with recirculation arrangement (a), dead-end cell (b), tubular with entrapped enzyme (c).
Reactors batch (B), continuous stirred tank (CST), fixed bed of catalyst (FB), fluidized bed of catalyst (FL), furnace (Furn.), multitubular (MT), semicontinuous stirred tank (SCST), tower (TO), tubular (TU). [Pg.553]

All chemical reactions are accompanied by some heat effects so that the temperature will tend to change, a serious result in view of the sensitivity of most reaction rates to temperature. Factors of equipment size, controllability, and possibly unfavorable product distribution of complex reactions often necessitate provision of means of heat transfer to keep the temperature within bounds. In practical operation of nonflow or tubular flow reactors, truly isothermal conditions are not feasible even if they were desirable. Individual continuous stirred tanks, however, do maintain substantially uniform temperatures at steady state when the mixing is intense enough the level is determined by the heat of reaction as well as the rate of heat transfer provided. [Pg.555]

If the points lie close to a straight line, this is taken as confirmation that a second-order equation satisfactorily describes the kinetics, and the value of the rate constant k2 is found by fitting the best straight line to the points by linear regression. Experiments using tubular and continuous stirred-tank reactors to determine kinetic constants are discussed in the sections describing these reactors (Sections 1.7.4 and 1.8.S). [Pg.24]

If the compositions vary with position in the reactor, which is the case with a tubular reactor, a differential element of volume SV, must be used, and the equation integrated at a later stage. Otherwise, if the compositions are uniform, e.g. a well-mixed batch reactor or a continuous stirred-tank reactor, then the size of the volume element is immaterial it may conveniently be unit volume (1 m3) or it may be the whole reactor. Similarly, if the compositions are changing with time as in a batch reactor, the material balance must be made over a differential element of time. Otherwise for a tubular or a continuous stirred-tank reactor operating in a steady state, where compositions do not vary with time, the time interval used is immaterial and may conveniently be unit time (1 s). Bearing in mind these considerations the general material balance may be written ... [Pg.25]


See other pages where Reactors continuously stirred tank tubular is mentioned: [Pg.402]    [Pg.318]    [Pg.53]    [Pg.475]    [Pg.501]    [Pg.27]    [Pg.521]    [Pg.413]    [Pg.159]    [Pg.128]    [Pg.123]    [Pg.406]    [Pg.47]    [Pg.62]    [Pg.83]    [Pg.104]    [Pg.4]    [Pg.24]    [Pg.26]   
See also in sourсe #XX -- [ Pg.171 , Pg.193 , Pg.224 ]




SEARCH



Continuous stirred reactor

Continuous stirred tank reactor

Continuous stirred tank reactor tubular

Continuous stirring tank reactor

Continuous tubular reactor

Continuously stirred tank

Continuously stirred tank reactor

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Stirred continuous

Stirred tank reactors

Tank reactor

Tank reactor reactors

Tubular reactors

© 2024 chempedia.info