Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor heterogeneous system

The differential reactor is used to evaluate the reaction rate as a function of concentration for a heterogeneous system. It consists of a tube that contains a small amount of catalyst as shown schematically in Figure 4-17. The conversion of the reactants in the bed is extremely small due to the small amount of catalyst used, as is the change in reactant concentration through the bed. The result is that the reactant concentration through the reactor is constant and nearly equal to the... [Pg.244]

Information on the composition and temperature changes is obtained from the rate equation, while the mixing patterns are related to the intensity of mixing and reactor geometry. Heat transfer is referred to as the exothermic or endothermic nature of the reactions and the mass transfer to the heterogeneous systems. [Pg.263]

Chemical reactions obey the rules of chemical kinetics (see Chapter 2) and chemical thermodynamics, if they occur slowly and do not exhibit a significant heat of reaction in the homogeneous system (microkinetics). Thermodynamics, as reviewed in Chapter 3, has an essential role in the scale-up of reactors. It shows the form that rate equations must take in the limiting case where a reaction has attained equilibrium. Consistency is required thermodynamically before a rate equation achieves success over tlie entire range of conversion. Generally, chemical reactions do not depend on the theory of similarity rules. However, most industrial reactions occur under heterogeneous systems (e.g., liquid/solid, gas/solid, liquid/gas, and liquid/liquid), thereby generating enormous heat of reaction. Therefore, mass and heat transfer processes (macrokinetics) that are scale-dependent often accompany the chemical reaction. The path of such chemical reactions will be... [Pg.1034]

Mass and heat balance equations for typical gas-liquid reactors in heterogeneous systems at steady state... [Pg.290]

Flow cells may also act as reactors. In BL, enzymes may be immobilized inside the cell either by chemical bonding on the inner surface or by entrapping the enzyme as a heterogeneous system by mechanical ways. This approach has the advantage of low consumption of expensive reagents and enhancement of their stability, which is usually low. Many bioluminescent reactions have utilized the benefit of this process. The flow cell is also used as a reactor in the case of electrogenerated chemiluminescence (ECL) when used with FI manifolds. Some of these applications are included in Table 4. [Pg.339]

Chapter 1 reviews the concepts necessary for treating the problems associated with the design of industrial reactions. These include the essentials of kinetics, thermodynamics, and basic mass, heat and momentum transfer. Ideal reactor types are treated in Chapter 2 and the most important of these are the batch reactor, the tubular reactor and the continuous stirred tank. Reactor stability is considered. Chapter 3 describes the effect of complex homogeneous kinetics on reactor performance. The special case of gas—solid reactions is discussed in Chapter 4 and Chapter 5 deals with other heterogeneous systems namely those involving gas—liquid, liquid—solid and liquid—liquid interfaces. Finally, Chapter 6 considers how real reactors may differ from the ideal reactors considered in earlier chapters. [Pg.300]

In homogeneous systems the volume of fluid in the reactor is often identical to the volume of reactor. In such a case V and Vj. are identical and Eqs. 2 and 6 are used interchangeably. In heterogeneous systems all the above definitions of reaction rate are encountered, the definition used in any particular situation often being a matter of convenience. [Pg.4]

So far we have concentrated on homogeneous reactions in ideal reactors. The reason is two-fold because this is the simplest of systems to analyze and is the easiest to understand and master also because the rules for good reactor behavior for homogeneous systems can often be applied directly to heterogeneous systems. [Pg.240]

There are many ways that two phases can be contacted, and for each the design equation will be unique. Design equations for these ideal flow patterns may be developed without too much difficulty. However, when real flow deviates considerably from these, we can do one of two things we may develop models to mirror actual flow closely, or we may calculate performance with ideal patterns which bracket actual flow. Fortunately, most real reactors for heterogeneous systems can be satisfactorily approximated by one of the five ideal flow patterns of Fig. 17.1. Notable exceptions are the reactions which take place in fluidized beds. There special models must be developed. [Pg.373]

For practical purposes it is often beneficial to use a heterogeneous system with the enzyme as a solid preparation which easily can be separated from the product in the liquid phase. Solid enzyme preparatiorrs can conveniently be used in packed bed and stirred tank reactors. As in other cases with heterogeneous catalysis, mass trarrsfer limitations can reduce the overall reaction rate, but usually this is no major problem. [Pg.348]

In multiphase systems, biological reactions are always carried out in the presence of water. This is true even if the presence of water is almost negligible. The biocatalyst maybe present as a solid phase, for example as immobilised enzymes or cells, or as an individual cell the substrate may also constitute a solid phase. When necessary, gas is sparged into reactors to supply oxygen or a gaseous substrate and to remove carbon dioxide. Thus, heterogeneous systems with four phases involved are very typical cases. [Pg.584]

There is a definite need, therefore, for systems that combine the advantages of high activity and selectivity of homogeneous catalysts with the facile recovery and recycling characteristic of their heterogeneous counterparts. This can be achieved by employing a different type of heterogeneous system, namely liquid-liquid biphasic catalysis, whereby the catalyst is dissolved in one liquid phase and the reactants and product(s) are in a second liquid phase. The catalyst is recovered and recycled by simple phase separation. Preferably, the catalyst solution remains in the reactor and is reused with a fresh batch of reactants without further treatment or, ideally, it is adapted to continuous operation. [Pg.14]

Water or waste water ozonation - regardless of the scale of equipment - is mostly performed in directly gassed systems, where the ozone containing gas is produced by an electrical discharge ozone generator and is introduced into the reactor by some type of gas diffuser. Since two phases, the gas and the liquid, are required for the oxidation reaction to proceed as it does, they are also called heterogeneous systems. [Pg.61]

Reactors can be operated either in a batch or continuous-flow mode. The combination, batch with respect to the liquid and continuous-flow with respect to the gas, is called semibatch. Often this fine distinction is ignored and it is commonly referred to as batch. The majority of ozonation experiments reported in the literature have been performed in one-stage semi-batch heterogeneous systems, with liquid phase reactor volumes in the range VL = 1-10 L. Most full-scale applications are operated in continuous-flow for both phases. [Pg.66]

Bubbling Fluidized Bed Catalytic Reactors (Heterogeneous Two-Phase System)... [Pg.169]

Power-law kinetic rate expressions can frequently be used to quantify homogeneous reactions. However, many reactions occur among species in different phases (gas, liquid, and solid). Reaction rate equations in such heterogeneous systems often become more complicated to account for the movement of material from one phase to another. An additional complication arises from the different ways in which the phases can be contacted with each other. Many important industrial reactors involve heterogeneous systems. One of the more common heterogeneous systems involves gas-phase reactions promoted with porous solid catalyst particles. [Pg.7]

The general forms of rate expressions in heterogeneous systems can have concentration or partial pressure dependences in both numerator and denominator along with various exponents. In heterogeneous reactors, it is not unusual to derive kinetic expressions that are more complicated than just a power-law expression. This, of course, has implications on how the reactor is controlled and the potential for runaway in exothermic systems. In some cases, where kinetics are very fast relative to mass transfer rates, the reactor behavior is governed by mass transfer and the variables that affect it. [Pg.10]

The CSTR is particularly useful for reaction schemes that require low concentration, such as selectivity between multiple reactions or substrate inhibition in a chemostat (see Section IV). The reactor also has applications for heterogeneous systems where high mixing gives high contact time between phases. Liquid-liquid CSTRs are used for the saponification of fats and for suspension and emulsion polymerizations. Gas-liquid mixers are used for the oxidation of cyclohexane. Gas homogeneous CSTRs are extremely rare. [Pg.465]

In fermentation reactors, cell growth is promoted or maintained to produce metabolite, biomass, transformed substrate, or purified solvent. Systems based on macro-organism cultures are usually referred as tissue cultures. Those based on dispersed non-tissue forming cultures of micro-organisms are loosely referred as microbial reactors. In enzyme reactors, substrate transformation is promoted without the life-support system of whole cells. Frequently, these reactors employ immobilized enzymes, where an enzyme is supported on inert solids so that it can be reused in the process. Virtually all bioreactors of technological importance deal with a heterogeneous system involving more than two phases. [Pg.110]

The use of the catalyst in continuous liquid phase reactions avoids such handling problems. Here the advantages of the heterogeneous system is obvious compared to homogeneous discontinuous systems. The reactions had to be carried out at lower temperatures than in the batch reactors to stay below the boiling point of the starting materials. Nevertheless, even at room temperature conversions of about 20 % and a selectivity towards the monoalkylated product of more than 95 % could be achieved (Figure 14). [Pg.91]

Tiltscher H., Schelchshom J., Wolf H., Dialer K., Differential Recycle Reactors for Investigation of Heterogeneous Systems at High Pressures and Temperature Ger. Chem. Eng. 313-320. [Pg.42]

Carbon monoxide is compressed and sparged into the reactor riser. The reactor has no mechanical moving parts, and is free from leakage/ maintenance problems. The ACETICA Catalyst is an immobilized Rh-complex catalyst on solid support, which offers higher activity and operates under less water conditions in the system due to heterogeneous system, and therefore, the system has much less corrosivity. [Pg.5]

Equations (51)-(54) indicate the need for calculating and The evaluation of the LVRPA inside the reactor was achieved by solving the RTE for the heterogeneous system. The radiation model considers that... [Pg.271]


See other pages where Reactor heterogeneous system is mentioned: [Pg.200]    [Pg.98]    [Pg.190]    [Pg.279]    [Pg.269]    [Pg.369]    [Pg.407]    [Pg.463]    [Pg.182]    [Pg.98]    [Pg.570]    [Pg.170]    [Pg.35]    [Pg.89]    [Pg.66]    [Pg.447]    [Pg.51]    [Pg.46]    [Pg.164]    [Pg.382]   
See also in sourсe #XX -- [ Pg.61 , Pg.66 , Pg.103 , Pg.117 ]




SEARCH



Heterogeneous reactor

Heterogeneous system

Heterogenous system

Reactor systems

Reactors for Heterogeneous Systems

System heterogeneity

© 2024 chempedia.info