Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor design reactions

Figure 11.1 Illustration of the interplay of reactor design, reaction conditions, and catalyst. Figure 11.1 Illustration of the interplay of reactor design, reaction conditions, and catalyst.
Wire Gauzes Wire screens are used for very fast catalytic reactions or reactions that require a bulk noble metal surface for reaction and must be quenched rapidly. The nature and morphology of the gauze or the finely divided catalyst are important in reactor design. Reaction temperatures are typically high, and the residence times are on the order of milliseconds. [Pg.27]

As often within reactor design, reaction field homogeneity within the microwave applicator is an essential criterion (cf. the phenomenon of field distributions under... [Pg.72]

The formulation of a correct catalyst is a compromise between the fluid flowing system of the reactor and the activity or stability. The relative importance of these factors depends on the reaction system, the reactor design, reaction conditions, and economic factors. [Pg.254]

Temperature control. Let us now consider temperature control of the reactor. In the first instance, adiabatic operation of the reactor should be considered, since this leads to the simplest and cheapest reactor design. If adiabatic operation produces an unacceptable rise in temperature for exothermic reactions or an unacceptable fall in temperature for endothermic reactions, this can be dealt with in a number of ways ... [Pg.42]

Solution The reversible nature of the reaction means that neither of the feed materials can be forced to complete conversion. The reactor design in Fig. [Pg.118]

The problem with the fiowsheet shown in Fig. 10.5 is that the ferric chloride catalyst is carried from the reactor with the product. This is separated by washing. If a reactor design can be found that prevents the ferric chloride leaving the reactor, the effluent problems created by the washing and neutralization are avoided. Because the ferric chloride is nonvolatile, one way to do this would be to allow the heat of reaction to raise the reaction mixture to the boiling point and remove the product as a vapor, leaving the ferric chloride in the reactor. Unfortunately, if the reaction mixture is allowed to boil, there are two problems ... [Pg.285]

The synthesis of reaction-separation systems. The recycling of material is an essential feature of most chemical processes. The use of excess reactants, diluents, or heat carriers in the reactor design has a significant effect on the flowsheet recycle structure. Sometimes... [Pg.400]

In this pyrolysis, sub atmospheric partial pressures are achieved by employing a diluent such as steam. Because of the corrosive nature of the acids (HE and HCl) formed, the reactor design should include a platinum-lined tubular reactor made of nickel to allow atmospheric pressure reactions to be mn in the presence of a diluent. Because the pyrolysate contains numerous by-products that adversely affect polymerization, the TFE must be purified. Refinement of TFE is an extremely complex process, which contributes to the high cost of the monomer. Inhibitors are added to the purified monomer to avoid polymerization during storage terpenes such as t7-limonene and terpene B are effective (10). [Pg.348]

Some reactors are designed specifically to withstand an explosion (14). The multitube fixed-bed reactors typically have ca 2.5-cm inside-diameter tubes, and heat from the highly exothermic oxidation reaction is removed by a circulating molten salt. This salt is a eutectic mixture of sodium and potassium nitrate and nitrite. Care must be taken in reactor design and operation because fires can result if the salt comes in contact with organic materials at the reactor operating temperature (15). Reactors containing over 20,000 tubes with a 45,000-ton annual production capacity have been constmcted. [Pg.483]

L. K. Doraiswany and M. M. Shamia, Heterogeneous Reactions, Hnaijses, Examples and Reactor Design, Vol. 2, Fluid—Fluid Solid Reactions, ]ohxi Wiley Sons, Inc., New York, 1984, pp. 299—300. [Pg.530]

CVD reactions are most often produced at ambient pressure in a freely flowing system. The gas flow, mixing, and stratification in the reactor chamber can be important to the deposition process. CVD can also be performed at low pressures (LPCVD) and in ultrahigh vacuum (UHVCVD) where the gas flow is molecular. The gas flow in a CVD reactor is very sensitive to reactor design, fixturing, substrate geometry, and the number of substrates in the reactor, ie, reactor loading. Flow uniformity is a particulady important deposition parameter in VPE and MOCVD. [Pg.523]

The quality and yield of carbon black depends on the quaUty of the feedstock, reactor design, and input variables. The stmcture is controlled by the addition of alkaU metals to the reaction or mixing 2ones. Usual practice is to use aqueous solutions of alkaU metal salts such as potassium chloride or potassium hydroxide sprayed into the combustion chamber or added to the make oil in the oil injector. Alkaline-earth compounds such as calcium acetate that increase the specific surface area are introduced in a similar manner. [Pg.546]

The hydrocarbon gas feedstock and Hquid sulfur are separately preheated in an externally fired tubular heater. When the gas reaches 480—650°C, it joins the vaporized sulfur. A special venturi nozzle can be used for mixing the two streams (81). The mixed stream flows through a radiantly-heated pipe cod, where some reaction takes place, before entering an adiabatic catalytic reactor. In the adiabatic reactor, the reaction goes to over 90% completion at a temperature of 580—635°C and a pressure of approximately 250—500 kPa (2.5—5.0 atm). Heater tubes are constmcted from high alloy stainless steel and reportedly must be replaced every 2—3 years (79,82—84). Furnaces are generally fired with natural gas or refinery gas, and heat transfer to the tube coil occurs primarily by radiation with no direct contact of the flames on the tubes. Design of the furnace is critical to achieve uniform heat around the tubes to avoid rapid corrosion at "hot spots."... [Pg.30]

An equimolar mixture of carbon monoxide and chlorine reacts at 500 K under a slight positive pressure. The reaction is extremely exothermic (Ai/gQQp. = —109.7 kJ or —26.22 kcal), and heat removal is the limiting factor in reactor design. Phosgene (qv) is often produced on-site for use in the manufacture of toluene diisocyanate (see Amines, aromatic-diaminotoluenes Isocyanates, organic). [Pg.51]

The U.S. Department of Energy has funded a research program to develop the Hquid-phase methanol process (LPMEOH) (33). This process utilizes a catalyst such as copper—zinc oxide suspended in a hydrocarbon oil. The Hquid phase is used as a heat-transfer medium and allows the reaction to be conducted at higher conversions than conventional reactor designs. In addition, the use of the LPMEOH process allows the use of a coal-derived, CO-rich synthesis gas. Typical reactor conditions for this process are 3.5—6.3 MPa (35—60 atm) and 473—563 K (see Methanol). [Pg.51]

This is an exothermic reaction, and both homogeneous (radical or cationic) and heterogeneous (soHd catalyst) initiators are used. The products range in molecular weight from below 1000 to a few million (see Olefin polymers). Reaction mechanisms and reactor designs have been extensively discussed (10-12). [Pg.432]

Butt, Reaction Kinetics and Reactor Design, Prentice-Hall, 1980. [Pg.683]

Walas Reaction Kinetics for Chemical Engineers, McGraw-Hill, 1959 Butterworths, 1989, pp. 153-164), and Rase Chemical Reactor Design for Process Plants, vol. 1, Wiley, 1977, pp. 178-191). [Pg.692]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

It follows that the position of thermodynamic equilibrium will change along the reactor for those reactions in which a change of tire number of gaseous molecules occurs, and therefore that the degree of completion and heat production or absorption of the reaction will also vaty. This is why the external control of the independent container temperature and the particle size of the catalyst are important factors in reactor design. [Pg.144]


See other pages where Reactor design reactions is mentioned: [Pg.167]    [Pg.167]    [Pg.48]    [Pg.56]    [Pg.338]    [Pg.341]    [Pg.22]    [Pg.46]    [Pg.64]    [Pg.234]    [Pg.126]    [Pg.139]    [Pg.504]    [Pg.508]    [Pg.368]    [Pg.87]    [Pg.87]    [Pg.373]    [Pg.8]    [Pg.34]    [Pg.455]    [Pg.457]    [Pg.459]    [Pg.688]    [Pg.704]    [Pg.707]    [Pg.707]    [Pg.1359]    [Pg.60]   
See also in sourсe #XX -- [ Pg.627 ]




SEARCH



Chemical reaction engineering reactor design

Design equations multiple reactions, tubular reactors

Design of Packed Bed Reactors for Gas-Liquid Reactions

Design of Reactors for Multiple Reactions

Fixed-bed reactor design for solid catalyzed fluid-phase reactions

Mixing-sensitive reactions reactor design

Multiple reactions, reactor design

Photochemical reactor design reaction mixtures

Polymerization reactions reactor design

Reaction parameters reactor design

Reaction yield Reactor design

Reactor Design for Autocatalytic Reactions

Reactor Design for Gas-Liquid Reactions

Reactor Design for Heterogeneous Catalytic Reactions

Reactor Design for a Single Reaction

Reactor design equation Reaction-based

Reactor design for multiple reactions

Reactors reaction

© 2024 chempedia.info