Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity theoretical methods

Many experimental techniques now provide details of dynamical events on short timescales. Time-dependent theory, such as END, offer the capabilities to obtain information about the details of the transition from initial-to-final states in reactive processes. The assumptions of time-dependent perturbation theory coupled with Fermi s Golden Rule, namely, that there are well-defined (unperturbed) initial and final states and that these are occupied for times, which are long compared to the transition time, no longer necessarily apply. Therefore, truly dynamical methods become very appealing and the results from such theoretical methods can be shown as movies or time lapse photography. [Pg.236]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

After the submission of this contribution, a remarkable review authored by Ratnasamy, Srinivas and Knozinger has appeared on the investigation, by means of both experimental and theoretical methods, of the active sites and reactive intermediates in titanium silicate molecular sieves [126]. [Pg.64]

Despite advent of theoretical methods and techniques and faster computers, no single theoretical method seems to be capable of reliable computational studies of reactivities of biocatalysts. Ab initio quantum mechanical (QM) methods may be accurate but are still too expensive to apply to large systems like biocatalysts. Semi-empirical quantum methods are not as accurate but are faster, but may not be fast enough for long time simulation of large molecular systems. Molecular mechanics (MM) force field methods are not usually capable of dealing with bond-breaking and formation... [Pg.21]

After all, even in the first case we deal with the interaction of an electron belonging to the gas particle with all the electrons of the crystal. However, this formulation of the problem already represents a second step in the successive approximations of the surface interaction. It seems that this more or less exact formulation will have to be considered until the theoretical methods are available to describe the behavior both of the polyatomic molecules and the metal crystal separately, starting from the first principles. In other words, a crude model of the metal, as described earlier, constructed without taking into account the chemical reactivity of the surface, would be in this general approach (in the contemporary state of matter) combined with a relatively precise model of the polyatomic molecule (the adequacy of which has been proved in the reactivity calculations of the homogeneous reactions). [Pg.53]

The dienes and polyenes are compounds which intervene in a large number of organic reactions, as will be seen in different chapters of this book. Several excellent reviews have been devoted to theoretical studies about their reactivity, with special emphasis on the mechanism of pericyclic reactions3-5. As was mentioned in the introduction, this section will only treat, as an example, the Diels-Alder reaction, since it has been the most studied one by theoreticians. Our goal is not to cover all aspects, but instead to show the high potential and usefulness of theoretical methods in order to interpret and rationalize the experimental results. In the rest of the chapter we will concentrate on the last ab initio calculations. [Pg.18]

As a final remark in this section, we expect that the results presented herein have shown how theoretical methods allow us to obtain some insight into a great variety of experimental facts, even in the complex case of chemical reactivity. [Pg.21]

The orbital coefficients obtained from Hiickel calculations predict the terminal position to be the most reactive one, while the AMI model predicts the Cl and C3 positions to be competitive. In polyenes, this is true for the addition of nucleophilic as well as electrophilic radicals, as HOMO and LUMO coefficients are basically identical. Both theoretical methods agree, however, in predicting the Cl position to be considerably more reactive as compared to the C2 position. It must be remembered in this context that FMO-based reactivity predictions are only relevant in kinetically controlled reactions. Under thermodynamic control, the most stable adduct will be formed which, for the case of polyenyl radicals, will most likely be the radical obtained by addition to the C1 position. [Pg.630]

The identification of unknown chemical compounds isolated in inert gas matrices is nowadays facilitated by comparison of the measured IR spectra with those computed at reliable levels of ab initio or density functional theory (DFT). Furthermore, the observed reactivity of matrix isolated species can in some instances be explained with the help of computed reaction energies and barriers for intramolecular rearrangements. Hence, electronic structure methods developed into a useful tool for the matrix isolation community. In this chapter, we will give an overview of the various theoretical methods and their limitations when employed in carbene chemistry. For a more detailed qualitative description of the merits and drawbacks of commonly used electronic structure methods, especially for open-shell systems, the reader is referred to the introductory guide of Bally and Borden.29... [Pg.162]

Metal ions play an important role as catalysts in many autoxidation reactions and have been considered instrumental in regulating natural as well as industrial processes. In these reactive systems, in particular when the reactions occur under environmental or in vivo biochemical conditions, the metal ions are involved in complicated interactions with the substrate(s) and dioxygen, and the properties of the actual matrix as well as the transport processes also have a pronounced impact on the overall reactions. In most cases, handling and analyzing such a complexity is beyond the capacity of currently available experimental, computational and theoretical methods, and researchers in this field are obliged to use simplified sub-systems to mimic the complex phenomena. When the simplified conditions are properly chosen, these studies provide surprisingly accurate predictions for the real systems. In this paper we review the results obtained in kinetic and mechanistic studies on the model systems, but we do not discuss their broad biological or environmental implications. [Pg.396]

A few theoretical methods applied to ring systems discussed in this chapter have been reported. In connection with studies of the reactivity and site of electrophilic substitution in a series of substituted l//-pyrrolotetrazoles 12 and (mesoionic) 2/7-pyrrolotetrazoles 13 (Section 11.06.5.1), semi-empirical AMI computations of atomic charges have been shown to be consistent with observation of slightly higher reactivity of isomer 13 over isomer 12 (R1 = H, Rz = Me, R3 = H, R4 = H) with C-5 as the preferred site of substitution <2001J(P1)729>. [Pg.945]

In the last decade, quantum-chemical investigations have become an integral part of modern chemical research. The appearance of chemistry as a purely experimental discipline has been changed by the development of electronic structure methods that are now widely used. This change became possible because contemporary quantum-chemical programs provide reliable data and important information about structures and reactivities of molecules and solids that complement results of experimental studies. Theoretical methods are now available for compounds of all elements of the periodic table, including heavy metals, as reliable procedures for the calculation of relativistic effects and efficient treatments of many-electron systems have been developed [1, 2] For transition metal (TM) compounds, accurate calculations of thermodynamic properties are of particularly great usefulness due to the sparsity of experimental data. [Pg.199]

Spectroscopic methods such as IR and Raman have proven to be exceptionally powerful methods for solving many chemistry problems . However, the vibrational assignment, as well as the understanding of the relationship between the observed spectral features and molecular structure or reactivity of the sample, can be very difficult. Theoretical methods can certainly assist to obtain a deeper understanding of the vibrational spectra of new compounds. These are the well-established force field calculations, semi-empirical and ab initio methods . [Pg.228]

This chapter deals with the theory underlying the apphcation of wavepackets to molecular photodissociation and reactive scattering. The objective will be to derive and gather together the equations and theoretical methods needed in such calculations. No attempt will be made to reference aU calculations that have been undertaken in this very popular field. Several alternative related methods will be discussed, but it will not be possible to do full justice to all the different methods that have been proposed, many of which are being successfully used. [Pg.250]

Amidst all the enthusiasm about this versatile new tool that quantum chemistry has put at the hands of practioners of IR spectroscopy in matrices, one should not forget its limitations. First, a valid prediction can only come from a calculation based on a correct structure. In the case of reactive intermediates, this is not always as evident as one might wish. A famous example is given in Chapter 16 in this volume Much of the recent discussion on the correct assignment of the IR spectrum of m-benzyne was caused by the fact that different theoretical methods predict different structures, with more or less bonding between the radical centers, for this species. The DFT methods appear to overestimate this bonding, and hence are unsuitable for the prediction of the IR spectrum of m-benzyne. [Pg.834]

The need to reliably describe liquid systems for practical purposes as condensed matter with high mobility at a given finite temperature initiated attempts, therefore, to make use of statistical mechanical procedures in combination with molecular models taking into account structure and reactivity of all species present in a liquid and a solution, respectively. The two approaches to such a description, namely Monte Carlo (MC) simulations and molecular dynamics (MD), are still the basis for all common theoretical methods to deal with liquid systems. While MC simulations can provide mainly structural and thermodynamical data, MD simulations give also access to time-dependent processes, such as reaction dynamics and vibrational spectra, thus supplying — connected with a higher computational effort — much more insight into the properties of liquids and solutions. [Pg.144]

Various theoretical methods and approaches have been used to model properties and reactivities of metalloporphyrins. They range from the early use of qualitative molecular orbital diagrams (24,25), linear combination of atomic orbitals to yield molecular orbitals (LCAO-MO) calculations (26-30), molecular mechanics (31,32) and semi-empirical methods (33-35), and self-consistent field method (SCF) calculations (36-43) to the methods commonly used nowadays (molecular dynamic simulations (31,44,45), density functional theory (DFT) (35,46-49), Moller-Plesset perturbation theory ( ) (50-53), configuration interaction (Cl) (35,42,54-56), coupled cluster (CC) (57,58), and CASSCF/CASPT2 (59-63)). [Pg.265]

We need to develop methods to understand trends for complex reactions with many reaction steps. This should preferentially be done by developing models to understand trends, since it will be extremely difficult to perform experiments or DFT calculations for all systems of interest. Many catalysts are not metallic, and we need to develop the concepts that have allowed us to understand and develop models for trends in reactions on transition metal surfaces to other classes of surfaces oxides, carbides, nitrides, and sulfides. It would also be extremely interesting to develop the concepts that would allow us to understand the relationships between heterogeneous catalysis and homogeneous catalysis or enzyme catalysis. Finally, the theoretical methods need further development. The level of accuracy is now so that we can describe some trends in reactivity for transition metals, but a higher accuracy is needed to describe the finer details including possibly catalyst selectivity. The reliable description of some oxides and other insulators may also not be possible unless the theoretical methods to treat exchange and correlation effects are further improved. [Pg.317]


See other pages where Reactivity theoretical methods is mentioned: [Pg.185]    [Pg.185]    [Pg.133]    [Pg.626]    [Pg.850]    [Pg.367]    [Pg.187]    [Pg.469]    [Pg.249]    [Pg.449]    [Pg.254]    [Pg.24]    [Pg.26]    [Pg.94]    [Pg.177]    [Pg.162]    [Pg.318]    [Pg.533]    [Pg.221]    [Pg.921]    [Pg.248]    [Pg.266]    [Pg.760]    [Pg.1078]    [Pg.156]    [Pg.626]    [Pg.850]    [Pg.697]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Theoretical methods

© 2024 chempedia.info