Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactive intermediates, organic

Wenthold P and Lineberger W C 1999 Negative ion photoelectron spectroscopy studies of organic reactive intermediates Accts. Chem. Res. 32 597-604... [Pg.1147]

You have already had considerable experience with carbanionic compounds and their applications in synthetic organic chemistry The first was acetyhde ion m Chapter 9 followed m Chapter 14 by organometallic compounds—Grignard reagents for example—that act as sources of negatively polarized carbon In Chapter 18 you learned that enolate ions—reactive intermediates generated from aldehydes and ketones—are nucleophilic and that this property can be used to advantage as a method for carbon-carbon bond formation... [Pg.886]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

Above pH 9, decomposition of ozone to the reactive intermediate, HO, determines the kinetics of ammonia oxidation. Catalysts, such as WO, Pt, Pd, Ir, and Rh, promote the oxidation of dilute aqueous solutions of ammonia at 25°C, only two of the three oxygen atoms of ozone can react, whereas at 75°C, all three atoms react (42). The oxidation of ammonia by ozone depends not only on the pH of the system but also on the presence of other oxidizable species (39,43,44). Because the ozonation rate of organic materials in wastewater is much faster than that of ammonia, oxidation of ammonia does not occur in the presence of ozone-reactive organics. [Pg.492]

Microwave or radio frequencies above 1 MHz that are appHed to a gas under low pressure produce high energy electrons, which can interact with organic substrates in the vapor and soHd state to produce a wide variety of reactive intermediate species cations, anions, excited states, radicals, and ion radicals. These intermediates can combine or react with other substrates to form cross-linked polymer surfaces and cross-linked coatings or films (22,23,29). [Pg.424]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

Chloroformates are reactive intermediates that combine acid chloride and ester functions. They undergo many reactions similar to those of acid chlorides however, the rates are usually slower (4—8). Those containing smaller organic (hydrocarbon) substituents react faster than those containing large organic (hydrocarbon) substituents (3). Reactions of chloroformates and other acid chlorides proceed faster with better yields when alkaU hydroxides or tertiary amines are present to react with the HCl as it forms. These bases act as stoichiometric acid acceptors rather than as tme catalysts. [Pg.38]

Toxic reactions occur by several mechanisms activation of metabolism, production of reactive intermediates and subsequent reactions with cell macromolecules, changing receptor responses, or through abnormal defence reactions. Several compounds cause toxicity by mimicking the organism s own hormones or neurotransmitters, or activating the body s endogenous receptors in some non-physiological way. ... [Pg.277]

Carbocations as reactive intermediates play an essential role in organic reactions and have been thoroughly researched 102, l0J). The individual quality of the cationic polymerization results from the reproduction of the cationic reactive intermediate in every propagation step during the addition of monomers. [Pg.203]

The oxidation or reduction of many organic substrates may lead to the formation of two or more reactive intermediates and the products which are isolated depend on the reactions of these intermediates in the environment of the electrode. It is primarily the electrode potential which determines which intermediate is formed and also the rate at which... [Pg.161]

For general references, see Isaacs, N.S. Reactive Intermediates in Organic Chemistry, Wiley NY, 1974, McManus, S.P. Organic Reactive Intermediates, Academic Press NY, 1973. Two serial publications devoted to review articles on this subject are Reactive Intermediates (Wiley) and Reactive Intermediates (Plenum). [Pg.254]

First reported by Meerwein, H. Rathjen, H. Werner, H. Bericht, 1942, 75, 1610. For reviews, see Bethell, D. in McManus Organic Reactive Intermediates Academic Press ... [Pg.831]

Progress in Physical Organic Chemistry Reactive Intermediates (Plenum)... [Pg.1621]

Whereas the original Moffat-Pfitzner oxidation employs dicyclohexylcarbodiimide to convert DMSO into the reactive intermediate DMSO species 1297, which oxidizes primary or secondary alcohols via 1298 and 1299 to the carbonyl compounds and dicyclohexylurea [78-80], subsequent versions of the Moffat-Pfitzner oxidation used other reagents such as S03/pyridine [80a, 83] or oxalyl chloride [81-83] to avoid the formation of dicyclohexylurea, which is often difficult to remove. The so-called Swern oxidation, a version of the Moffat-Pfitzner oxidation employing DMSO/oxalyl chloride at -60°C in CH2CI2 and generating Me2SCl2 1277 with formation of CO/CO2, has become a standard reaction in preparative organic chemistry (Scheme 8.31). [Pg.204]

The direct reductive amination (DRA) is a useful method for the synthesis of amino derivatives from carbonyl compounds, amines, and H2. Precious-metal (Ru [130-132], Rh [133-137], Ir [138-142], Pd [143]) catalyzed reactions are well known to date. The first Fe-catalyzed DRA reaction was reported by Bhanage and coworkers in 2008 (Scheme 42) [144]. Although the reaction conditions are not mild (high temperature, moderate H2 pressure), the hydrogenation of imines and/or enam-ines, which are generated by reaction of organic carbonyl compounds with amines, produces various substituted aryl and/or alkyl amines. A dihydrogen or dihydride iron complex was proposed as a reactive intermediate within the catalytic cycle. [Pg.59]

Hydrogen Abstraction Photoexcited ketone intermolecular hydrogen atom abstraction reactions are an interesting area of research becanse of their importance in organic chemistry and dne to the complex reaction mechanisms that may be possible for these kinds of reactions. Time resolved absorption spectroscopy has typically been nsed to follow the kinetics of these reactions but these experiments do not reveal mnch abont the strnctnre of the reactive intermediates. " Time resolved resonance Raman spectroscopy can be used to examine the structure and properties of the reactive intermediates associated with these reactions. Here, we will briefly describe TR experiments reported by Balakrishnan and Umapathy to study hydrogen atom abstraction reactions in the fluoranil/isopropanol system as an example. [Pg.151]

Time-Resolved Infrared (TRIR) Studies of Organic Reactive Intermediates... [Pg.183]


See other pages where Reactive intermediates, organic is mentioned: [Pg.509]    [Pg.509]    [Pg.240]    [Pg.423]    [Pg.168]    [Pg.149]    [Pg.9]    [Pg.335]    [Pg.440]    [Pg.4]    [Pg.948]    [Pg.66]    [Pg.428]    [Pg.33]    [Pg.22]    [Pg.954]    [Pg.6]    [Pg.124]    [Pg.882]    [Pg.945]    [Pg.1165]    [Pg.2]    [Pg.6]    [Pg.109]    [Pg.255]    [Pg.255]    [Pg.443]    [Pg.54]    [Pg.86]    [Pg.106]   


SEARCH



Dynamic effects: organic reactive intermediates

Intermediate reactivity

Intermediates, reactive

Is TST Completely Correct The Dynamic Behavior of Organic Reactive Intermediates

Metabolic activation, organic reactive intermediates

Organic intermediates

Organic radical ions reactive intermediates

Organic reaction mechanism reactive carbon intermediates

Organic reactions, involving reactive intermediates

Organic synthesis, reactive intermediates

Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions, First Edition

Reactive intermediates in organic chemistry

© 2024 chempedia.info