Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions leading to product formation

On the basis of the results of the product analyses, the following reactions have to be considered [Pg.366]

Condensation and polymerisation processes are only of minor importance in the vapour phase. [Pg.366]

Reaction I (in a peculiar form), as well as reactions II, III and IV all occur in the photolysis of cyclobutanone, though the quantum yield of step IV is very low. The occurrence of reaction III in the photolysis of cyclopentanone was not reported however, in that of cyclohexanone and cycloheptanone again all four reactions seemed to take place. [Pg.366]

Reactions I-IV are to be considered also in the photolysis of the alkyl-substituted cyclic ketones, as was shown by the investigations dealing with the photochemistry [Pg.366]

The first question to be answered is whether reactions I-IV are separate processes, or not. [Pg.367]


Reaction 1 is the slowest step in this series of reactions leading to product formation. It is the rate-limiting step. Since this reaction involves bringing E and S together, it is a second-order reaction overall and first order with respect to the total enzyme concentration and the substrate concentration. [Pg.100]

It is also possible to determine the nature of the excited molecule reaction leading to product formation by kinetic methods. For example, variation in the rate of formation of dimethyluracil hydrate with water concentration in acetonitrile-water mixtures is convex to the water concentration axis (Fig. 15).65 The rate of formation of uracil hydrate under similar conditions is linear with water concentration. The first of these is not the shape of curve to be expected if the function of the water molecules were simply to quench an excited state according to the common mechanism ... [Pg.274]

In combinatorial chemistry, the development of multicomponent reactions leading to product formation is an attractive strategy because relatively complex molecules can be assembled with fewer steps and in shorter periods. For example, the Ugi multicomponent reaction involving the combination of an isocyanide, an aldehyde, an amine, and a carboxylic acid results in the synthesis of a-acyl amino amide derivatives [32]. The scope of this reaction has been explored in solid-phase synthesis and it allows the generation of a large number of compounds with relative ease. This reaction has been employed in the synthesis of a library of C-glycoside conjugated amino amides [33]. Scheme 14.14 shows that, on reaction with carboxylic acids 38, isocyanides 39, and Rink amide resin derivatized with different amino acids 40, the C-fucose aldehyde 37 results in the library synthesis of C-linked fucosyl amino acids 41 as potential mimics of sialyl Lewis. ... [Pg.751]

The alkene that adds to the diene is called the dienophile. Because the Diels-Alder reaction leads to the formation of a ring, it is termed a cycloaddition reaction. The product contains a cyclohexene ring as a strarctural unit. [Pg.409]

An alkene activated by an electron-withdrawing group—often an acrylic ester 2 is used—can react with an aldehyde or ketone 1 in the presence of catalytic amounts of a tertiary amine, to yield an a-hydroxyalkylated product. This reaction, known as the Baylis-Hillman reaction, leads to the formation of useful multifunctional products, e.g. o -methylene-/3-hydroxy carbonyl compounds 3 with a chiral carbon center and various options for consecutive reactions. [Pg.28]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

Their precursors must be the tricarbonyl o-allenyls with the uncoordinated C=C bonds. Neither an allylic rearrangement nor cis-trans isomerization has been observed in the reaction of CpMo(CO)3(cw-CH2CH=CHMe) with PPhj, the product being CpMo(CO)2(PPh3)(cw-COCH2CH=CHMe) (81). The interesting reaction leading to the formation of cationic carbene compounds was mentioned earlier [Eq. (17) and Section V] (78). [Pg.120]

The rate is thus the number of collisions between A and B - a very large number - multiplied by the reaction probability, which may be a very small number. For example, if the energy barrier corresponds to 100 kj mol , the reaction probability is only 3.5 x lO l at 500 K. Hence, only a very small fraction of all collisions leads to product formation. In a way, a reaction is a rare event For examples of the application of collision theory see K.J. Laidler, Chemical Kinetics 3 Ed. (1987), Harper Row, New York. [Pg.104]

The melting points of chromium (1857 °C) and of manganese (1244 °C) are considerably lower than that of alumina. The heat requirement in respect of the reactions leading to the formation of these metals was calculated by considering alumina melting as the objective. The objective changes when aluminothermy is applied to the production of the refractory metals niobium and tantalum. Niobium melts at 2468 °C and tantalum at 3020 °C. Thus, when these metals are the products, the heat requirements for reaching temperatures in excess of 2500 °C and 3050 °C have to be calculated. [Pg.392]

Miscellaneous Reactions of Phosphines.- The role of chiral phosphines as ligands in the catalysis of reactions leading to the formation of chiral products has been reviewed.1111 A procedure for the determination of the enantiomeric excess in chiral phosphines has been developed, based on 13C n.m.r. studies of the diastereoisomeric complexes formed by phosphines with the chiral pinenyl nickel bromide complex. 111 Studies of the sulphonation of triphenylphosphine and of chiral arylphosphines have been reported in attempts to prepare water soluble ligands which aid... [Pg.14]

Guideline 2. The atomic and electronic structure of the reactants and products may provide important clues as to the nature of possible intermediate species. The degree of atomic and electronic rearrangement that takes place will often indicate which portions of the reactant molecules participate in the reaction act and which would be involved in elementary reactions leading to the formation of reaction intermediates. The structural arrangement of atoms in the molecules that react must correspond at the instant of reaction to interatomic distances appropriate for the formation of new species. [Pg.84]

Oxidation of benzene to phenol. This was attempted in the former U.S.S.R. and Japan on a pilot-plant scale. High yields were reported, but full-scale operation apparently was discontinued because of destruction of product by irradiation and the possibility of explosion in the reaction vessel. The latter danger can be controlled in the oxidation of halo-genated hydrocarbons such as trichloro- or tetrachloroethylenes, where a chain reaction leads to the formation of dichloro- or trichloro-acetic acid chlorides through the respective oxides. [Pg.367]

The reaction of ADC compounds with carbenes and their precursors has already been discussed in Section IV,A- In general, the heterocyclic products are not the result of 1,2-addition but of 1,4-addition of the carbene to the —N=N—C=0 system.1 Thus the ADC compound reacts as a 4n unit in a cheletropic reaction leading to the formation of 1,3,4-oxadiazolines. Recent applications include the preparation of spiro-1,3,4-oxadiazolines from cyclic diazoketones and DEAZD as shown in Eq. (14),133 and the synthesis of the acyl derivatives 85 from the pyridinium salts 86.134 The acyl derivatives 85 are readily converted into a-hydroxyketones by a sequence of hydrolysis and reduction reactions. [Pg.24]

Scheme 150).225 227 The pyran products predominate when the ratio of triphenylphosphine to palladium catalyst exceeds two whereas the linear oligomers are the major products when this ratio is close to unity. The suggested227 mechanism (Scheme 151) includes a step of insertion of C=0 into a C—Pd palladium-catalyzed reactions leading to the formation of pyranones (see Scheme 152)228 and piperidones (see Scheme 139 in Section V,A,2).211 It is useful to note that the 2,5-divinyltetrahydropyran derivative can be transformed catalytically by ruthenium trichloride into synthetically useful 3,4-dihydro-2//-pyran derivatives (Scheme 153).229... [Pg.387]

Reactions leading to the formation of the catalytically active nickel hydride species from organonickel precursors (Section III) can be regarded as model reactions for olefin oligomerization reactions. The reactions described by Eq. (8) and Scheme 3 (Section III) show that RNiX compounds (R = methyl orallyl, X = halide or acetylacetonate) activated by Lewis acids add to double bonds under mild reaction conditions (-40° or 0°C). It follows further from these reactions that under conditions leading to olefin dimerization a rapid nickel hydride /3-hydrogen elimination reaction occurs. The fact that products resulting from olefin insertion into the nickel-carbon bond are only observed when /3-hydride... [Pg.119]

Sheridan and co-workers reported a novel photo-assisted [5 + 2 + 2]-reaction based on the reactions of 77S-cyclodienyl Mn complexes160,161 or Cr complexes162 and two alkynes. Decomplexation of the metal gives cycloadducts in moderate to good overall yields (Scheme 66, Equation (42), and Scheme 67). It should be noted that the authors refer to this reaction as a [5 + 2]-, [3 + 2]- or a [5 + 2]-, homo-[5 + 2]-reaction. This reaction leads to the formation of impressively complex tricyclic products that would be otherwise difficult to prepare with step economy. [Pg.636]

The addition of organometallic reagents to the carbonyl group of conveniently substituted aldonolactones constitutes a viable chain-extension method. The reaction leads to the formation of hemiacetals of glyculoses, 1-methylene sugars, and C-glycosyl compounds, which are precursors of, or occur as subunits of, a variety of natural products. [Pg.136]

Different from conventional chemical kinetics, the rates in biochemical reactions networks are usually saturable hyperbolic functions. For an increasing substrate concentration, the rate increases only up to a maximal rate Vm, determined by the turnover number fccat = k2 and the total amount of enzyme Ej. The turnover number ca( measures the number of catalytic events per seconds per enzyme, which can be more than 1000 substrate molecules per second for a large number of enzymes. The constant Km is a measure of the affinity of the enzyme for the substrate, and corresponds to the concentration of S at which the reaction rate equals half the maximal rate. For S most active sites are not occupied. For S >> Km, there is an excess of substrate, that is, the active sites of the enzymes are saturated with substrate. The ratio kc.AJ Km is a measure for the efficiency of an enzyme. In the extreme case, almost every collision between substrate and enzyme leads to product formation (low Km, high fccat). In this case the enzyme is limited by diffusion only, with an upper limit of cat /Km 108 — 109M. v 1. The ratio kc.MJKm can be used to test the rapid... [Pg.133]

Here also there are two hydrogen atoms in excess, but they are removed by secondary reactions (leading to the formation of hydrogenated products). The well-known drug atophan (used in gout),... [Pg.368]


See other pages where Reactions leading to product formation is mentioned: [Pg.366]    [Pg.465]    [Pg.525]    [Pg.94]    [Pg.465]    [Pg.152]    [Pg.366]    [Pg.465]    [Pg.525]    [Pg.94]    [Pg.465]    [Pg.152]    [Pg.219]    [Pg.514]    [Pg.282]    [Pg.732]    [Pg.1001]    [Pg.854]    [Pg.863]    [Pg.320]    [Pg.854]    [Pg.292]    [Pg.246]    [Pg.227]    [Pg.232]    [Pg.77]    [Pg.107]    [Pg.364]    [Pg.436]    [Pg.572]    [Pg.844]    [Pg.282]    [Pg.53]    [Pg.75]    [Pg.325]    [Pg.67]   


SEARCH



Formate production

Lead production

Lead products

Reaction product formation

© 2024 chempedia.info