Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions in carbon dioxide

The only standard test method that is available is actually a test method for determining coke reactivity and coke strength after reaction (ASTM D-5341). This test method describes the equipment and techniques used for determining lump coke reactivity in carbon dioxide (CO2) gas at elevated temperatures and its strength after reaction in carbon dioxide gas by tumbling in a cylindrical chamber. [Pg.155]

Enzymes are biocatalysts constructed of a folded chain of amino acids. They may be used under mild conditions for specific and selective reactions. While many enzymes have been found to be catalytically active in both aqueous and organic solutions, it was not until quite recently that enzymes were used to catalyze reactions in carbon dioxide when Randolph et al. (1985) performed the enzyme-catalyzed hydrolysis of disodium p-nitrophenol using alkaline phosphatase and Hammond et al. (1985) used polyphenol oxidase to catalyze the oxidation of p-cresol and p-chlorophenol. Since that time, more than 80 papers have been published concerning reactions in this medium. Enzymes can be 10-15 times more active in carbon dioxide than in organic solvents (Mori and Okahata, 1998). Reactions include hydrolysis, esterification, transesterification, and oxidation. Reactor configurations for these reactions were batch, semibatch, and continuous. [Pg.103]

There are many factors that influence the outcome of enzymatic reactions in carbon dioxide. These include enzyme activity, enzyme stability, temperature, pH, pressure, diffusional limitations of a two-phase heterogeneous mixture, solubility of enzyme and/or substrates, water content of the reaction system, and flow rate of carbon dioxide (continuous and semibatch reactions). It is important to understand the aspects that control and limit biocatalysis in carbon dioxide if one wants to improve upon the process. This chapter serves as a brief introduction to enzyme chemistry in carbon dioxide. The advantages and disadvantages of running reactions in this medium, as well as the factors that influence reactions, are all presented. Many of the reactions studied in this area are summarized in a manner that is easy to read and referenced in Table 6.1. [Pg.103]

There are many pharmaceutical applications for the modification of one enantiomer over another, and to this end, many have studied these selective reactions in carbon dioxide. Glowacz et al. (1996) studied the enzymatic hydrolysis of triolein and its partial glycerides and found that stereoselectivity depends on reaction time and enzyme water content. They suggest that the water content varies the local environment of the enzyme in carbon dioxide and changes the local pH value. Rantakyla et al. (1996) also found that the hydrolysis of one stereoisomer over another was water-dependent. They studied the hydrolysis of 3-(4-methoxyphenyl)glycidic acid methylester and found that the 2S,3R enantiomer hydrolyzed more than fivefold faster than the 2R3S form. [Pg.114]

Barbieri, G. and Bernardo, P. (2004) Experimental evaluation of hydrogen production by membrane reaction, in Carbon Dioxide Capture for Storage in Deep Geologic Formations — Results from the C02 Capture Project, vol. 1, Elsevier, pp. 385—408, Chapter 22. [Pg.306]

Beckman s comprehensive review paper [5] describes chemical reactions in carbon dioxide-based solvents, and evaluates their green character. The title of the paper - Supercritical and near-critical CO2 in green chemical synthesis and processing - is revealing of the new trends in the use of carbon dioxide. [Pg.212]

Huorous compounds are also potentially useful as additives to promote organic reactions in carbon dioxide. For example, a fluorous alcohol RfCH20H assists asymmetric hydrogenations with non-fluorous ruthenium BINAP catalysts, and a fluorous aryl alkyl ether (C8F17C6H4-P-OC12H25) does so in scandium-triflate-catalyzed aldol and Friedel-Crafts reactions. These additives are presumed to act as solubilizers or emulsifiers to promote contact among the various reaction components. Since they are fluorous, they can be readily recovered from the otherwise organic reaction mixtures for reuse. [Pg.112]

Table II. Regioseiectivity of Diels-Alder reactions in Carbon Dioxide and conventional solvents (from Renslo et al. (7))... Table II. Regioseiectivity of Diels-Alder reactions in Carbon Dioxide and conventional solvents (from Renslo et al. (7))...
Discussion. Temelli asked how the addition of ethanol and the creation of a mixed phase would affect a reaction. King replied that patents exist on multiphase systems containing ethanol or glycerol with SC-COj. Debenedetti inquired about opportunities for enzymatic reactions involving reverse micelles. King replied he had seen some theses related to this topic. Debenedetti and Johnston discussed why one would want to carry out reactions in carbon dioxide that could just as well be carried out in water the answer is that follow-up separation may be easier in the first case, and water-insoluble substrates could be made to react at the interface. Schneider stated that the word solvation should not be used... [Pg.566]

Hunter, S. E. Savage, R E. Acid-Catalyzed Reactions in Carbon Dioxide-Enriched High-Temperature Liquid Water. Ind. Eng. Chem. Res., 2003, 42(2), 290-294. [Pg.300]

RD Weinstein, A Renslo, RL Danheiser, JW Tester. Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions. J Phys Chem B 103 2878-2887, 1999. [Pg.185]

For some purposes in the Grignard reaction) solid carbon dioxide, narketed as Dry Ice or Drikold, may be employed. [Pg.185]

Uses, cx-Aminonitriles may be hydrolyzed to aminoacids, such as is done in producing ethylenediaminetetracetate (EDTA) or nittilotriacetate (NTA). In these cases, formaldehyde is utilized in place of a ketone in the synthesis. The principal use of the ketone-based aminonitriles described above is in the production of azobisnittile radical initiators (see below). AN-64 is also used as an intermediate in the synthesis of the herbicide Bladex. Aminonitriles are also excellent intermediates for the synthesis of substituted hydantoins by reaction with carbon dioxide however, this is not currently commercially practiced. [Pg.222]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Also, the presence of strong bases, even in trace amounts, can promote the formation of isocyanurates or carbodiimides. In the event of gross contamination, the exothermic reaction can sharply increase the temperature of the material. Normally, the trimerization reaction occurs first and furnishes heat for the carbodiimide reaction. The carbodiimide reaction Hberates carbon dioxide and forms a hard soHd. The Hberation of carbon dioxide in a sealed vessel could result in overpressurization and mpture. [Pg.457]

Potassium Carbonate. Except for small amounts produced by obsolete processes, eg, the leaching of wood ashes and the Engel-Precht process, potassium carbonate is produced by the carbonation, ie, via reaction with carbon dioxide, of potassium hydroxide. Potassium carbonate is available commercially as a concentrated solution containing ca 47 wt % K CO or in granular crystalline form containing 99.5 wt % K CO. Impurities are small amounts of sodium and chloride plus trace amounts (<2 ppm) of heavy metals such as lead. Heavy metals are a concern because potassium carbonate is used in the production of chocolate intended for human consumption. [Pg.532]

Other components in the feed gas may react with and degrade the amine solution. Many of these latter reactions can be reversed by appHcation of heat, as in a reclaimer. Some reaction products cannot be reclaimed, however. Thus to keep the concentration of these materials at an acceptable level, the solution must be purged and fresh amine added periodically. The principal sources of degradation products are the reactions with carbon dioxide, carbonyl sulfide, and carbon disulfide. In refineries, sour gas streams from vacuum distillation or from fluidized catalytic cracking (FCC) units can contain oxygen or sulfur dioxide which form heat-stable salts with the amine solution (see Fluidization Petroleum). [Pg.211]

The dimensions of permeabiUty become clear after rearranging equation 1 to solve for P. The permeabiUty must have dimensions of quantity of permeant (either mass or molar) times thickness ia the numerator with area times a time iaterval times pressure ia the denomiaator. Table 1 contains conversion factors for several common unit sets with the permeant quantity ia molar units. The unit nmol/(m-s-GPa) is used hereia for the permeabiUty of small molecules because this unit is SI, which is preferred ia current technical encyclopedias, and it is only a factor of 2, different from the commercial permeabihty unit, (cc(STP)-mil)/(100 in. datm). The molar character is useful for oxygen permeation, which could ultimately involve a chemical reaction, or carbon dioxide permeation, which is often related to the pressure in a beverage botde. [Pg.487]

Except as an index of respiration, carbon dioxide is seldom considered in fermentations but plays important roles. Its participation in carbonate equilibria affects pH removal of carbon dioxide by photosynthesis can force the pH above 10 in dense, well-illuminated algal cultures. Several biochemical reactions involve carbon dioxide, so their kinetics and equilibrium concentrations are dependent on gas concentrations, and metabolic rates of associated reactions may also change. Attempts to increase oxygen transfer rates by elevating pressure to get more driving force sometimes encounter poor process performance that might oe attributed to excessive dissolved carbon dioxide. [Pg.2139]

The water reaction evolves carbon dioxide and is to be avoided with solid elastomers but is important in the manufacture of foams. These reactions cause chain extension and by the formation of urea and urethane linkages they provide sites for cross-linking, since these groups can react with free isocyanate or terminal isocyanate groups to form biuret or allophanate linkages respectively (Figure 27.5). [Pg.785]

The Grignard reagent from 2-thenyl chloride can be obtained by the use of the "cyclic reactor.However, rearrangement occurs in its reaction with carbon dioxide, ethyl chlorocarbonate, acetyl chloride, formaldehyde, and ethylene oxide to 3-substituted 2-methylthio-phenes, Only in the case of carbon dioxide has the normal product also been isolated. [Pg.92]

The possible employment of beryllium in nuclear engineering and in the aircraft industry has encouraged considerable investigation into its oxidation characteristics. In particular, behaviour in carbon dioxide up to temperatures of 1 000°C has been extensively studied and it has been shown that up to a temperature of 600°C the formation of beryllium oxide follows a parabolic law but with continued exposure break-away oxidation occurs in a similar fashion to that described for zirconium. The presence of moisture in the carbon dioxide enhances the break-away reaction . It has been suggested that film growth proceeds by cation diffusion and that oxidation takes place at the oxide/air interface. ... [Pg.835]

The solid corrosion products in carbon dioxide and carbon monoxide are uranium dioxide, uranium carbides and carbon. The major reaction with carbon dioxide results in the formation of carbon monoxide ... [Pg.908]

The mechanisms of corrosion by steam are similar to those for water up to 450°C, but at higher temperatures are more closely related to the behaviour in carbon dioxide. Studies at 100°C have demonstrated that uranium hydride is produced during direct reaction of the water vapour with the metal and not by a secondary reaction with the hydrogen product. Also at 100°C it has been shown that the hydride is more resistant than the metal. Inhibition with oxygen reduces the evolution of hydrogen and does not involve reaction of the oxygen with the uranium . Above 450°C the hydride is not... [Pg.909]


See other pages where Reactions in carbon dioxide is mentioned: [Pg.109]    [Pg.77]    [Pg.835]    [Pg.57]    [Pg.109]    [Pg.77]    [Pg.835]    [Pg.57]    [Pg.487]    [Pg.4]    [Pg.93]    [Pg.318]    [Pg.27]    [Pg.404]    [Pg.511]    [Pg.544]    [Pg.22]    [Pg.8]    [Pg.109]    [Pg.783]    [Pg.42]    [Pg.74]    [Pg.807]    [Pg.498]    [Pg.909]    [Pg.910]    [Pg.955]    [Pg.866]    [Pg.100]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



Carbon Dioxide Conversion in High Temperature Reactions

Carbon dioxide reaction

Diels-Alder Reaction in Supercritical Carbon Dioxide

Diels-Alder reactions in supercritical carbon dioxid

Dioxides, reactions

M. Aresta et al., Reaction Mechanisms in Carbon Dioxide Conversion

Supercritical Carbon Dioxide: in Polymer Reaction Engineering

© 2024 chempedia.info