Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction System Composition

The base ingredients used in process flavors generally include (a) a protein nitrogen source, (b) a carbohydrate, (c) a fat or fatty acid, (d) water, (e) a pH regulator(s), and (f) various flavor enhancers. Depending upon the flavor and the creator, numerous other ingredients may be added to provide a given sensory note, e.g., smoke, or spice. [Pg.265]

International Organization of the Flavor Industry (I.O.F.I.) Guidelines for the Production and Labeling of Process Flavorings [Pg.266]

Process flavorings are produced by heating raw materials which are foodstuffs or constituents of foodstuffs in similarity with the cooking of food. [Pg.266]

The member associations of I.O.F.I. have adopted the following Guidelines in order to assure the food industry and the ultimate consumer of food of the quality, safety and compliance with legislation of process flavorings. [Pg.266]

These Guidelines deal with thermal process flavorings they do not apply to foods, flavoring extracts, defined flavoring substances or mixtures of flavoring substances and flavor enhancers. [Pg.266]


A tank reactor characterized by a continuous flow of reactants into and products from the reaction system. Composition and temperature of the reaction system is at all times identical to composition and temperature of the product stream. [Pg.145]

One can see that this overall process is very much an art and that the exact duplication of a competitive flavor is extremely difficult. It generally is difficult to determine initial reaction system composition due to the consumption of the reactants, plus there is little information that can be gathered about processing solids content, pH, times, or temperatures of heating, all critical factors in determining flavor, from examining the flnished flavoring. [Pg.272]

What we seek next is a quantitative relationship between the extent of the polymerization reaction, the composition of the monomer mixture, and the point of gelation. We shall base our discussion on the system described by reaction (5.U) other cases are derived by similar methods. To further specify the system we assume that A groups limit the reaction and that B groups are present in excess. Two parameters are necessary to characterize the reaction mixture ... [Pg.315]

The transformed variables describe the system composition with or without reaction and sum to unity as do Xi and yi. The condition for azeotropy becomes X, = Y,. Barbosa and Doherty have shown that phase and distillation diagrams constructed using the transformed composition coordinates have the same properties as phase and distillation region diagrams for nonreactive systems and similarly can be used to assist in design feasibility and operability studies [Chem Eng Sci, 43, 529, 1523, and 2377 (1988a,b,c)]. A residue curve map in transformed coordinates for the reactive system methanol-acetic acid-methyl acetate-water is shown in Fig. 13-76. Note that the nonreactive azeotrope between water and methyl acetate has disappeared, while the methyl acetate-methanol azeotrope remains intact. Only... [Pg.1320]

For the reaction system under consideration, experiments are made at a series of bulk-liqiiid and bulk-gas compositions representing the compositions to be expected at different levels in the commercial absorber (on the basis of a material balance). [Pg.1366]

Understanding the behavior of all the chemicals involved in the process—raw materials, intermediates, products and by-products, is a key aspect to identifying and understanding the process safety issues relevant to a given process. The nature of the batch processes makes it more likely for the system to enter a state (pressure, temperature, and composition) where undesired reactions can take place. The opportunities for undesired chemical reactions also are far greater in batch reaction systems due to greater potential for contamination or errors in sequence of addition. This chapter presents issues, concerns, and provides potential solutions related to chemistry in batch reaction systems. [Pg.5]

The well-mixed reaction system with uniform composition that is operated batchwise. [Pg.262]

The composition of block copolymers and, in particular, alternation of PAN and PEO blocks in the macromolecule of copolymers depends on the ratio between PEO and acrylonitrile in the reaction system. At low PEO concentrations in the reaction mixture a tri-block copolymer is probably formed with the following alternation of blocks ... [Pg.131]

The scheme of commercial methane synthesis includes a multistage reaction system and recycle of product gas. Adiabatic reactors connected with waste heat boilers are used to remove the heat in the form of high pressure steam. In designing the pilot plants, major emphasis was placed on the design of the catalytic reactor system. Thermodynamic parameters (composition of feed gas, temperature, temperature rise, pressure, etc.) as well as hydrodynamic parameters (bed depth, linear velocity, catalyst pellet size, etc.) are identical to those in a commercial methana-tion plant. This permits direct upscaling of test results to commercial size reactors because radial gradients are not present in an adiabatic shift reactor. [Pg.124]

The E-model was also applied to a system of parallel reactions (Baldyga and Bourne, 1990a). It was found that selectivity depends on compositions of both the initial reactor content and the stream added for chemically equivalent mixtures of three reactants (see reaction system given by Eqns. (5.4-143) and (5.4-144)). For an instantaneous reaction, the yield of 5 varies from 0 to 100 % depending on the mode of composing the feeding stream. [Pg.344]

It should be emphasized that for Markovian copolymers a knowledge of the values of structural parameters of such a kind will suffice to find the probability of any sequence Uk, i.e. for an exhaustive description of the microstructure of the chains of these copolymers with a given average composition. As for the composition distribution of Markovian copolymers, this obeys for any fraction of Z-mers the Gaussian formula whose covariance matrix elements are Dap/l where Dap depend solely on the values of structural parameters [2]. The calculation of their dependence on time, and the stoichiometric and kinetic parameters of the reaction system permits a complete statistical description of the chemical structure of Markovian copolymers to be accomplished. The above reasoning reveals to which extent the mathematical modeling of the processes of the copolymer synthesis is easier to perform provided the alternation of units in macromolecules is known to obey Markovian statistics. [Pg.167]

The instantaneous composition of a copolymer X formed at a monomer mixture composition x coincides, provided the ideal model is applicable, with stationary vector ji of matrix Q with the elements (8). The mathematical apparatus of the theory of Markov chains permits immediately one to wright out of the expression for the probability of any sequence P Uk in macromolecules formed at given x. This provides an exhaustive solution to the problem of sequence distribution for copolymers synthesized at initial conversions p l when the monomer mixture composition x has had no time to deviate noticeably from its initial value x°. As for the high-conversion copolymerization products they evidently represent a mixture of Markovian copolymers prepared at different times, i.e. under different concentrations of monomers in the reaction system. Consequently, in order to calculate the probability of a certain sequence Uk, it is necessary to average its instantaneous value P Uk over all conversions p preceding the conversion p up to which the synthesis was conducted. [Pg.177]

At the initial stage of bulk copolymerization the reaction system represents the diluted solution of macromolecules in monomers. Every radical here is an individual microreactor with boundaries permeable to monomer molecules, whose concentrations in this microreactor are governed by the thermodynamic equilibrium whereas the polymer chain propagation is kinetically controlled. The evolution of the composition of a macroradical X under the increase of its length Z is described by the set of equations ... [Pg.184]

Here all components of the vector e,-, except the z-th one which is unity, are equal to zero. Because the molecular reaction (30) is induced by chemical interaction of groups Aj and A- its rate constant apparently equals k ia-a + a ja ). It is possible to write down an infinite set of kinetic equations corresponding to the scheme (30) for the concentrations C(l a f) of molecules of different composition and functionality which are present in the reaction system at the moment t. To solve these equations it is convenient to go over to the equivalent equation ... [Pg.192]

A complete list of the reaction conditions tested for this response surface design can be found in [76], The center point reaction condition was repeated six times. This was done to measure the variability of the reaction system. Also, the space velocity is kept constant, as it was the least important factor predicted by screening design, for all the reaction conditions. The purpose of this nested response surface design was to develop an empirical model in the form of Eqn (5) to relate the five reaction condition variables and the three catalyst composition variables to the observed catalytic performance. [Pg.342]

J2.2.2 Methods of Following the Course of a Reaction. A general direct method of measuring the rate of a reaction does not exist. One can only determine the amount of one or more product or reactant species present at a certain time in the system under observation. If the composition of the system is known at any one time, then it is sufficient to know the amount of any one species involved in the reaction as a function of time in order to be able to establish the complete system composition at any other time. This statement is true of any system whose reaction can be characterized by a single reaction progress variable ( or fA). In practice it is always wise where possible to analyze occasionally for one or more other species in order to provide a check for unexpected errors, losses of material, or the presence of side reactions. [Pg.37]

Perhaps the most obvious method of studying kinetic systems is to periodically withdraw samples from the system and to subject them to chemical analysis. When the sample is withdrawn, however, one is immediately faced with a problem. The reaction will proceed just as well in the test sample as it will in the original reaction medium. Since the analysis will require a certain amount of time, regardless of the technique used, it is evident that if one is to obtain a true measurement of the system composition at the time the sample was taken, the reaction must somehow be quenched or inhibited at the moment the sample is taken. The quenching process may involve sudden cooling to stop the reaction, or it may consist of elimination of one of the reactants. In the latter case, the concentration of a reactant may be reduced rapidly by precipitation or by fast quantitative reaction with another material that is added to the sample mixture. This material may then be back-titrated. For example, reactions between iodine and various reducing agents can be quenched by addition of a suitably buffered arsenite solution. [Pg.38]

It is always wise to calibrate physical methods of analysis using mixtures of known composition under conditions that approximate as closely as practicable those prevailing in the reaction system. This procedure is recommended because side reactions can introduce large errors and because some unforeseen complication may invalidate the results obtained with the technique. For example, in spectrophotometric studies of reaction kinetics, the absorbance that one measures can be grossly distorted by the presence of small amounts of highly colored absorbing impurities or by-products. For this reason, when one uses indirect physical methods in kinetic studies, it is essential to verify the stoichiometry of the reaction to ensure that the products of the reaction and their relative mole numbers are known with certainty. For the same reason it is recommended that more than one physical method of analysis be used in detailed kinetic studies. [Pg.39]

In principle, any physical property that varies during the course of the reaction can be used to follow the course of the reaction. In practice one chooses methods that use physical properties that are simple exact functions of the system composition. The most useful relationship is that the property is an additive function of the contributions of the different species and that each of these contributions is a linear function of the concentration of the species involved. This physical situation implies that there will be a linear dependence of the property on the extent of reaction. As examples of physical properties that obey this relationship, one may cite electrical conductivity of dilute solutions, optical density, the total pressure of gaseous systems under nearly ideal conditions, and rotation of polarized light. In sufficiently dilute solutions, other physical properties behave in this manner to a fairly good degree of approximation. More complex relationships than the linear one can be utilized but, in such cases, it is all the more imperative that the experimentalist prepare care-... [Pg.39]

Equilibrium compositions from C-H20-CaO and C-H20 reaction systems are calculated by using HSC Chemistry 4.0 software. Gas compositions for the C-H20-CaO reaction system and for the C-H20 reaction system are shown in Figure 3.11a and 3.11b, respectively. In the C-H20-CaO reaction system, CO, C02, and CH4 are lower, and H2 is higher than those in the C-H20 reaction system. CO and C02 decreased with increasing pressure, and... [Pg.115]


See other pages where Reaction System Composition is mentioned: [Pg.265]    [Pg.265]    [Pg.2117]    [Pg.515]    [Pg.2]    [Pg.691]    [Pg.163]    [Pg.12]    [Pg.245]    [Pg.510]    [Pg.227]    [Pg.291]    [Pg.251]    [Pg.386]    [Pg.164]    [Pg.169]    [Pg.175]    [Pg.178]    [Pg.185]    [Pg.186]    [Pg.188]    [Pg.31]    [Pg.43]    [Pg.395]    [Pg.25]    [Pg.38]    [Pg.40]    [Pg.139]    [Pg.147]    [Pg.1638]    [Pg.418]   


SEARCH



Composite reaction

Composition reaction

© 2024 chempedia.info