Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms carbonyl complexes

The reaction mechanisms by which the VOCs are oxidized are analogous to, but much more complex than, the CH oxidation mechanism. The fastest reacting species are the natural VOCs emitted from vegetation. However, natural VOCs also react rapidly with O, and whether they are a net source or sink is determined by the natural VOC to NO ratio and the sunlight intensity. At high VOC/NO ratios, there is insufficient NO2 formed to offset the O loss. However, when O reacts with the internally bonded olefinic compounds, carbonyls are formed and, the greater the sunshine, the better the chance the carbonyls will photolyze and produce OH which initiates the O.-forming chain reactions. [Pg.370]

Scheme 4 shows in a general manner cyclocondensations considered to involve reaction mechanisms in which nucleophilic heteroatoms condense with electrophilic carbonyl groups in a 1,3-relationship to each other. The standard method of preparation of pyrazoles involves such condensations (see Chapter 4.04). With hydrazine itself the question of regiospecificity in the condensation does not occur. However, with a monosubstituted hydrazine such as methylhydrazine and 4,4-dimethoxybutan-2-one (105) two products were obtained the 1,3-dimethylpyrazole (106) and the 1,5-dimethylpyrazole (107). Although Scheme 4 represents this type of reaction as a relatively straightforward process, it is considerably more complex and an appreciable effort has been expended on its study (77BSF1163). Details of these reactions and the possible variations of the procedure may be found in Chapter 4.04. [Pg.121]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

The mechanism for the hetero-Diels-Alder reaction of benzaldehyde 9 with the very reactive diene, Danishefsky s diene 10, catalyzed by aluminum complexes has been investigated from a theoretical point of view using semi-empirical calculations [27]. The focus in this investigation was to address the question if the reaction proceeds directly to the hetero-Diels-Alder adduct 11, or if 11 is formed via a Mukaiyama aldol intermediate (Scheme 8.4) (see the chapter dealing with hetero-Diels-Alder reactions of carbonyl compounds). [Pg.316]

Fig. 13. Proposed reaction mechanism for ACS. The reaction involves the sequential assembly of acetyl-CoA from a carbonyl, methyl, and CoA. We favor a Ni(l) nucleophile to form a catEdytically competent paramagnetic M-CO complex, but see text for discussion of Em alternative mechanism. Fig. 13. Proposed reaction mechanism for ACS. The reaction involves the sequential assembly of acetyl-CoA from a carbonyl, methyl, and CoA. We favor a Ni(l) nucleophile to form a catEdytically competent paramagnetic M-CO complex, but see text for discussion of Em alternative mechanism.
A key step proposed in the radical chain mechanism for the formation of the formyl complex is the coordination of CO to the Rh(OEP)- monomer, to give an intermediate carbonyl complex, Rh(OEP)(CO)- which then abstracts hydride from Rh(OEP)H to give the formyl product.This mechanism was proposed without direct evidence for the CO complex, and since then, again from the research group of Wayland, various Rh(fl) porphyrin CO complexes, Rh(Por)(CO), have been observed spectroscopically along with further reaction products which include bridging carbonyl and diketonate complexes. [Pg.294]

The Co2(CO)g/pyridine system can catalyze carbomethoxylation of butadiene to methyl 3-pentenoate (Eq. 6.44) [80]. The reaction mechanism of the cobalt-catalyzed carbalkoxylation of olefins was investigated and the formation of a methoxycar-bonylcobalt species, MeOC(0)Co from a cobalt carbonyl complex with methanol as an intermediate is claimed [81, 82]. [Pg.198]

Frankcombe, K. E., Cavell, K. J., Knott, R. B., Yates, B. F., 1997, Competing Reaction Mechanisms for the Carbonylation of Neutral Palladium(II) Complexes Containing Bidentate Ligands a Theoretical Study ,... [Pg.287]

However, while ruthenium carbonyl was found to decompose the formate ion in basic media, the rate was slower (<0.1 mmol trimethyl ammonium formate to H2 and C02 per hour) than the rate of the water-gas shift reaction (>0.4 mmol H2/hr) at 5 atm CO and 100 °C. Increasing CO pressure decreased the formate decomposition rate. However, it was observed that increasing the CO pressure from 5 atm CO to 50 atm increased the H2 production rate to 10 mmol/hr. They proposed, in a similar manner to Pettit et al.,34 a mechanism that involved nucleophilic attack by amine (instead of hydroxide). Activation of the metal carbonyl (e.g., Ru3(CO) 2 cluster to Ru(CO)5) was suggested to be favored by dilution, increases in CO pressure, or, in the case of Group VIb metal carbonyl complexes, photolytic promotion. The mechanism is shown below in Scheme 9 ... [Pg.127]

Analogous carbonylation reactions using nickel and iron carbonyl based systems also produce alkanecarboxylic acids [11, 13, 14]. The mechanism of the conversion of benzyl halides into arylacetic acids using iron pentacarbonyl is not as well defined as it is for reactions promoted by nickel or molybdenum carbonyl complexes. Iron... [Pg.371]

In 1994, Thomas reported146,147 that alkenes also underwent an addition reaction with vinylketene complexes that differed crucially in the loss of the ketene carbonyl fragment. Complexes 252.a-252.d were isolated as yellow crystalline solids. Clearly this suggests that the process occurs by a mechanism different from the alkyne insertion, and this will be discussed... [Pg.344]


See other pages where Reaction mechanisms carbonyl complexes is mentioned: [Pg.139]    [Pg.346]    [Pg.686]    [Pg.1152]    [Pg.277]    [Pg.62]    [Pg.73]    [Pg.198]    [Pg.130]    [Pg.2]    [Pg.194]    [Pg.8]    [Pg.127]    [Pg.190]    [Pg.350]    [Pg.48]    [Pg.166]    [Pg.31]    [Pg.14]    [Pg.189]    [Pg.376]    [Pg.343]    [Pg.125]    [Pg.159]    [Pg.284]    [Pg.8]    [Pg.93]    [Pg.231]    [Pg.366]    [Pg.377]    [Pg.317]    [Pg.318]    [Pg.336]    [Pg.372]    [Pg.674]    [Pg.318]    [Pg.79]   
See also in sourсe #XX -- [ Pg.235 ]




SEARCH



Carbonyl complexes reactions

Carbonyl mechanism

Carbonylation mechanism

Carbonylative mechanism

Complex reactions/mechanisms

Iridium-complex catalyzed carbonylation reaction mechanism

Mechanism complexes

Reaction mechanisms carbonyls

Rhodium complex-catalyzed carbonylation reaction mechanism

© 2024 chempedia.info