Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms carbonyls

Chemistry of the Carbonyl Group, A Programmed Approach to Organic Reaction Mechanisms , Stuart Warren, Wiley 1974. This programme leads up to the present one. [Pg.1]

All these facts—the observation of second order kinetics nucleophilic attack at the carbonyl group and the involvement of a tetrahedral intermediate—are accommodated by the reaction mechanism shown m Figure 20 5 Like the acid catalyzed mechanism it has two distinct stages namely formation of the tetrahedral intermediate and its subsequent dissociation All the steps are reversible except the last one The equilibrium constant for proton abstraction from the carboxylic acid by hydroxide is so large that step 4 is for all intents and purposes irreversible and this makes the overall reaction irreversible... [Pg.855]

The reaction mechanism and rates of methyl acetate carbonylation are not fully understood. In the nickel-cataly2ed reaction, rate constants for formation of methyl acetate from methanol, formation of dimethyl ether, and carbonylation of dimethyl ether have been reported, as well as their sensitivity to partial pressure of the reactants (32). For the rhodium chloride [10049-07-7] cataly2ed reaction, methyl acetate carbonylation is considered to go through formation of ethyUdene diacetate (33) ... [Pg.77]

The first anhydride plant in actual operation using methyl acetate carbonylation was at Kingsport, Tennessee (41). A general description has been given (42) indicating that about 900 tons of coal are processed daily in Texaco gasifiers. Carbon monoxide is used to make 227,000 t/yr of anhydride from 177,000 t/yr of methyl acetate 166,000 t/yr of methanol is generated. Infrared spectroscopy has been used to foUow the apparent reaction mechanism (43). [Pg.77]

The reaction mechanisms by which the VOCs are oxidized are analogous to, but much more complex than, the CH oxidation mechanism. The fastest reacting species are the natural VOCs emitted from vegetation. However, natural VOCs also react rapidly with O, and whether they are a net source or sink is determined by the natural VOC to NO ratio and the sunlight intensity. At high VOC/NO ratios, there is insufficient NO2 formed to offset the O loss. However, when O reacts with the internally bonded olefinic compounds, carbonyls are formed and, the greater the sunshine, the better the chance the carbonyls will photolyze and produce OH which initiates the O.-forming chain reactions. [Pg.370]

Scheme 4 shows in a general manner cyclocondensations considered to involve reaction mechanisms in which nucleophilic heteroatoms condense with electrophilic carbonyl groups in a 1,3-relationship to each other. The standard method of preparation of pyrazoles involves such condensations (see Chapter 4.04). With hydrazine itself the question of regiospecificity in the condensation does not occur. However, with a monosubstituted hydrazine such as methylhydrazine and 4,4-dimethoxybutan-2-one (105) two products were obtained the 1,3-dimethylpyrazole (106) and the 1,5-dimethylpyrazole (107). Although Scheme 4 represents this type of reaction as a relatively straightforward process, it is considerably more complex and an appreciable effort has been expended on its study (77BSF1163). Details of these reactions and the possible variations of the procedure may be found in Chapter 4.04. [Pg.121]

As is clear from the preceding examples, there are a variety of overall reactions that can be initiated by photolysis of ketones. The course of photochemical reactions of ketones is veiy dependent on the structure of the reactant. Despite the variety of overall processes that can be observed, the number of individual steps involved is limited. For ketones, the most important are inter- and intramolecular hydrogen abstraction, cleavage a to the carbonyl group, and substituent migration to the -carbon atom of a,/S-unsaturated ketones. Reexamination of the mechanisms illustrated in this section will reveal that most of the reactions of carbonyl compounds that have been described involve combinations of these fundamental processes. The final products usually result from rebonding of reactive intermediates generated by these steps. [Pg.765]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]

After deposition of 0.5 nm of copper onto plasma modified polyimide, the peaks due to carbon atoms C8 and C9 and the oxygen atoms 03 and 04 were reduced in intensity, indicating that new states formed by the plasma treatment were involved in formation of copper-polyimide bonds instead of the remaining intact carbonyl groups. Fig. 28 shows the proposed reaction mechanism between copper and polyimide after mild plasma treatment. [Pg.277]

The Basic Mechanisms of Cycloaddition Reactions of Carbonyl Compounds with Conjugated Dienes... [Pg.152]

There have been few mechanistic studies of Lewis acid-catalyzed cycloaddition reactions with carbonyl compounds. Danishefsky et ah, for example, concluded that the reaction of benzaldehyde 1 with trans-l-methoxy-3-(trimethylsilyloxy)-l,3-di-methyl-1,3-butadiene (Danishefsky s diene) 2 in the presence of BF3 as the catalyst proceeds via a stepwise mechanism, whereas a concerted reaction occurs when ZnCl2 or lanthanides are used as catalysts (Scheme 4.3) [7]. The evidence of a change in the diastereochemistry of the reaction is that trans-3 is the major cycloaddition product in the Bp3-catalyzed reaction, whereas cis-3 is the major product in, for example, the ZnCl2-catalyzed reaction - the latter resulting from exo addition (Scheme 4.3). [Pg.154]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

The mechanism for the hetero-Diels-Alder reaction of benzaldehyde 9 with the very reactive diene, Danishefsky s diene 10, catalyzed by aluminum complexes has been investigated from a theoretical point of view using semi-empirical calculations [27]. The focus in this investigation was to address the question if the reaction proceeds directly to the hetero-Diels-Alder adduct 11, or if 11 is formed via a Mukaiyama aldol intermediate (Scheme 8.4) (see the chapter dealing with hetero-Diels-Alder reactions of carbonyl compounds). [Pg.316]

The reaction mechanism is supported by findings from experiments with 0-labeled benzophenone 6 after rearrangement, the labeled oxygen is found in the carbonyl group only ... [Pg.20]

Both in the laboratory and in living organisms, the reactions of carbonyl compounds take place by one of four general mechanisms nucleophilic addition, nucleophilic acyl substitution, alpha substitution, and carbonyl condensation. These... [Pg.688]

The suggested reaction mechanism involves a nucleophilic attack of the imine nitrogen at the activated triple bond, followed by a proton exchange, to give a benzimidazolinium system which, by intramolecular attack at the carbonyl group, leads to an epoxide that ring opens to the observed product. For the ethyl derivative (R = Et) a tub conformation could be established by X-ray crystallographic analysis.33... [Pg.535]

Fig. 13. Proposed reaction mechanism for ACS. The reaction involves the sequential assembly of acetyl-CoA from a carbonyl, methyl, and CoA. We favor a Ni(l) nucleophile to form a catEdytically competent paramagnetic M-CO complex, but see text for discussion of Em alternative mechanism. Fig. 13. Proposed reaction mechanism for ACS. The reaction involves the sequential assembly of acetyl-CoA from a carbonyl, methyl, and CoA. We favor a Ni(l) nucleophile to form a catEdytically competent paramagnetic M-CO complex, but see text for discussion of Em alternative mechanism.
The importance of displacement reactions on carbonyl compounds in chemistry and biochemistry has resulted in numerous mechanistic studies. In solution, there is general acceptance of the following mechanism for addition of anionic nucleophiles which features a tetrahedral intermediate, 1, and is designated (1). However, recent experimental (2 10) and theoretical (11-17)... [Pg.200]

The Co2(CO)g/pyridine system can catalyze carbomethoxylation of butadiene to methyl 3-pentenoate (Eq. 6.44) [80]. The reaction mechanism of the cobalt-catalyzed carbalkoxylation of olefins was investigated and the formation of a methoxycar-bonylcobalt species, MeOC(0)Co from a cobalt carbonyl complex with methanol as an intermediate is claimed [81, 82]. [Pg.198]

Microbial growth, enzymatic reactions, non-enzymatic browning (reaction between carbonyl and amino compounds), and lipid oxidation are the major deterioration mechanisms that limit the stability of low moisture (o intermediate moisture foods (o.6o < <0.85) and biological materials. [Pg.39]

Frankcombe, K. E., Cavell, K. J., Knott, R. B., Yates, B. F., 1997, Competing Reaction Mechanisms for the Carbonylation of Neutral Palladium(II) Complexes Containing Bidentate Ligands a Theoretical Study ,... [Pg.287]


See other pages where Reaction mechanisms carbonyls is mentioned: [Pg.826]    [Pg.213]    [Pg.228]    [Pg.488]    [Pg.277]    [Pg.826]    [Pg.624]    [Pg.263]    [Pg.153]    [Pg.315]    [Pg.143]    [Pg.765]    [Pg.81]    [Pg.10]    [Pg.951]    [Pg.73]    [Pg.198]    [Pg.201]    [Pg.332]    [Pg.951]    [Pg.194]    [Pg.28]    [Pg.41]    [Pg.54]    [Pg.345]    [Pg.7]   
See also in sourсe #XX -- [ Pg.369 ]




SEARCH



Carbonyl addition reactions mechanisms

Carbonyl compound-nucleophile reaction mechanism

Carbonyl condensation reaction mechanism

Carbonyl group, reaction mechanism

Carbonyl mechanism

Carbonyl ylides reaction mechanisms

Carbonylation mechanism

Carbonylative Stille reaction, mechanism

Carbonylative mechanism

Catalytic methanol carbonylation reaction mechanism

Hydration carbonyl compounds, reaction mechanisms

Iridium-complex catalyzed carbonylation reaction mechanism

Mechanism of Carbonyl Condensation Reactions

Nucleophilic carbonyl addition reaction mechanism

Reaction mechanisms carbonyl complexes

Reaction mechanisms carbonyl insertion

Reactions with carbonyl compounds mechanism

Rhodium complex-catalyzed carbonylation reaction mechanism

With consecutive carbonylation reactions mechanism

© 2024 chempedia.info