Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanism catalyst surface

Without substantial artistic talent, depicting organic reaction mechanisms on surfaces is difficult. Over the years, a variety of methods have been invented and used with differing successes. Frequently used is an asterisk, an M, or sometimes the symbol of the metal catalyst to designate a surface catalytic... [Pg.19]

In PEM fuel cells, catalyst activity and catalyst efficiency are still significant issues. Russell and Rose summarize fundamental work involving X-ray absorption spectroscopy on catalysts in low temperature fuel cell systems. These types of studies are very useful for developing a detailed understanding of the mechanisms of reactions at catalyst surfaces and could lead to the development of new improved efficient catalysts. Important in the development of fuel cell technology are mathematical models of engineering aspects of a fuel cell system. Wang writes about studies related to this topic. [Pg.5]

Figure 7 presents the overall, idealized reaction mechanism. The surface of MCM-48 contains 0.9 OH / nmJ, which react completely with DMDCS in the liquid phase, if NEt3 is used as a catalyst. The majority of the silanols react monofunctionally but a small fraction also reacts further, according to reaction (3) to yield inert, bidentate species. All chlorine functions on the surface are converted towards hydroxyls upon hydrolysis. The VO(acac)2 is reacted in a gas-phase reactor with this silylated, hydrolyzed surface. All recreated silanols react with the VO(acac)2 in a 1 1 stoichiometry, following a ligand-exchange mechanism. Upon calcination at 450°C, the acac ligands are decomposed but the methylsilyl functions remain intact. Most of the V-species are converted into isolated, tetrahedral VvOx species, as indicated in Figure 4. However, a small fraction clusters to form surface oligomers, hereby recreating a fraction of the silanols. Figure 7 presents the overall, idealized reaction mechanism. The surface of MCM-48 contains 0.9 OH / nmJ, which react completely with DMDCS in the liquid phase, if NEt3 is used as a catalyst. The majority of the silanols react monofunctionally but a small fraction also reacts further, according to reaction (3) to yield inert, bidentate species. All chlorine functions on the surface are converted towards hydroxyls upon hydrolysis. The VO(acac)2 is reacted in a gas-phase reactor with this silylated, hydrolyzed surface. All recreated silanols react with the VO(acac)2 in a 1 1 stoichiometry, following a ligand-exchange mechanism. Upon calcination at 450°C, the acac ligands are decomposed but the methylsilyl functions remain intact. Most of the V-species are converted into isolated, tetrahedral VvOx species, as indicated in Figure 4. However, a small fraction clusters to form surface oligomers, hereby recreating a fraction of the silanols.
Given the discussion in Section 5.6 of adsorption and reactions on catalyst surfaces, it is reasonable to expect our best catalyst rate expres-sion.s may be of the Hougen-Watson form. In this section we study an example reaction mechanism of this form. Consider the following reaction and rate expression... [Pg.205]

The Pd-O bond also varies with the extent of oxidation of Pd. During the methane combustion reaction, the catalyst surface is a non-equilibrium, kineti-cally controlled structure. The oxygen concentration profile in the particle results from a combination of particle reconstruction, oxygen adsorption, bulk diffusion, and oxygen removal. This concentration profile varies as a function of time, and as the oxygen content increases, the Pd-O bond strength decreases. This increase is accompanied by an increase in the specific activity. The most widely accepted reaction pathway is the Mars and van Krevelen redox mechanism, which involves lattice oxygen and uneoordinated Pd centers as active species. Inhibition by products (H2O and CO2) and impurities (SO2) is a major drawback for low temperature combustion. The effect of sulfur is particularly important for catalytic converters for NGV applications because it drastically reduces the methane combustion activity. [Pg.35]

Applications of ISS are similar to the applications of static SIMS, described subsequently. ISS is used to study surface reaction mechanisms, catalyst behavior, and adsorption-desorption processes at surfaces. Because of its ability to discriminate among isotopes of an element, ISS can be used to study diffusion or any other reactions involving the replacement of one isotope for another. [Pg.908]

Thermal cracking tends to deposit carbon on the catalyst surface which can be removed by steaming. Carbon deposition by this mechanism tends to occur near the entrance of the catalyst tubes before sufficient hydrogen has been produced by the reforming reactions to suppress the right hand side of the reaction. Promoters, such as potash, are used to help suppress cracking in natural gas feedstocks containing heavier hydrocarbons. Carbon may also be formed by both the disproportionation and the reduction of carbon monoxide... [Pg.346]

Chemical, or abiotic, transformations are an important fate of many pesticides. Such transformations are ubiquitous, occurring in either aqueous solution or sorbed to surfaces. Rates can vary dramatically depending on the reaction mechanism, chemical stmcture, and relative concentrations of such catalysts as protons, hydroxyl ions, transition metals, and clay particles. Chemical transformations can be genetically classified as hydrolytic, photolytic, or redox reactions (transfer of electrons). [Pg.218]

Much work has been undertaken to understand the steps and intermediates by which the reaction occurs on the heterogeneous catalyst surface. However, the exact mechanism is not fully established. One approach assumes a first-step adsorption of carbon monoxide on the catalyst surface followed by a transfer of an adsorbed hydrogen atom from an adjacent site to the metal carbonyl (M-CO) ... [Pg.126]

According to this scheme, the process is initiated by the activation of only the hydrogen on the catalyst surface, after which the reaction takes place in the gas volume. Mills and Steffgen (5) questioned this mechanism and concluded that the mechanism of C02 methanation is uncertain and that this would be a fruitful field for investigation. [Pg.19]

In kinetic analysis of coupled catalytic reactions it is necessary to consider some specific features of their kinetic behavior. These specific features of the kinetics of coupled catalytic reactions will be discussed here from a phenomenological point of view, i.e. we will show which phenomena occur or may occur, and what formal kinetic description they have if the coupling of reactions is taking place. No attention will be paid to details of mechanisms of the processes occurring on the catalyst surface from a molecular point of view. [Pg.9]

The same reaction mechanism operated on the surfaces of both kinds of catalyst on metals and their hydrides as well. The reaction proceeded according to the Rideal-Eley mechanism and was of first order with respect to the atomic hydrogen concentration in the gas phase. [Pg.275]

The chemical properties of oxide surfaces have been studied by several methods, including oxygen exchange. This method has been used to investigate the mechanisms of heterogeneous reactions for which oxides are active catalysts [36]. The dimerization step does not necessarily precede desorption and Malinin and Tolmachev [634], in one of the few reviews of decomposition kinetics of solid metal oxides, use this criterion to distinguish two alternative reaction mechanisms, examples being... [Pg.146]

The reactant is adsorbed on the catalyst s surface. As a reactant molecule attaches to the surface of the catalyst, its bonds are weakened and the reaction can proceed more quickly because the bonds are more easily broken (Fig. 13.36). One important step in the reaction mechanism of the Haber process for the synthesis of ammonia is the adsorption of N2 molecules on the iron catalyst and the weakening of the strong N=N triple bond. [Pg.687]

Film diffusion may influence the overall reaction because of the low gas flow rate. As the bulk concentrations change little with time along the length of the reactor, an assumption of constant difference between bulk and catalyst surface concentrations is used in this study and the rate constants will change with gas flow rates. Nevertheless, the activation energies will remain constant, and the proposed reaction kinetics still provides useful hint for understanding the reaction mechanism and optimizing the reactor and operation conditions. [Pg.336]

In Chapter 1 we emphasized that the properties of a heterogeneous catalyst surface are determined by its composition and structure on the atomic scale. Hence, from a fundamental point of view, the ultimate goal of catalyst characterization should be to examine the surface atom by atom under the reaction conditions under which the catalyst operates, i.e. in situ. However, a catalyst often consists of small particles of metal, oxide, or sulfide on a support material. Chemical promoters may have been added to the catalyst to optimize its activity and/or selectivity, and structural promoters may have been incorporated to improve the mechanical properties and stabilize the particles against sintering. As a result, a heterogeneous catalyst can be quite complex. Moreover, the state of the catalytic surface generally depends on the conditions under which it is used. [Pg.129]

Partial oxidations over complex mixed metal oxides are far from ideal for singlecrystal like studies of catalyst structure and reaction mechanisms, although several detailed (and by no means unreasonable) catalytic cycles have been postulated. Successful catalysts are believed to have surfaces that react selectively vith adsorbed organic reactants at positions where oxygen of only limited reactivity is present. This results in the desired partially oxidized products and a reduced catalytic site, exposing oxygen deficiencies. Such sites are reoxidized by oxygen from the bulk that is supplied by gas-phase O2 activated at remote sites. [Pg.374]

A unique pilot plant/minlreactor/surface analysis system has been designed and put Into operation. This system represents the closest encounter reported In the literature to date between "real world" catalysis and-surface analytical techniques. It allows In depth studies of reaction kinetics and reaction mechanisms and their correlation with catalyst surface properties. [Pg.25]

In the case of selective oxidation catalysis, the use of spectroscopy has provided critical Information about surface and solid state mechanisms. As Is well known( ), some of the most effective catalysts for selective oxidation of olefins are those based on bismuth molybdates. The Industrial significance of these catalysts stems from their unique ability to oxidize propylene and ammonia to acrylonitrile at high selectivity. Several key features of the surface mechanism of this catalytic process have recently been descrlbed(3-A). However, an understanding of the solid state transformations which occur on the catalyst surface or within the catalyst bulk under reaction conditions can only be deduced Indirectly by traditional probe molecule approaches. Direct Insights Into catalyst dynamics require the use of techniques which can probe the solid directly, preferably under reaction conditions. We have, therefore, examined several catalytlcally Important surface and solid state processes of bismuth molybdate based catalysts using multiple spectroscopic techniques Including Raman and Infrared spectroscopies, x-ray and neutron diffraction, and photoelectron spectroscopy. [Pg.27]

One promising extension of this approach Is surface modification by additives and their Influence on reaction kinetics. Catalyst activity and stability under process conditions can be dramatically affected by Impurities In the feed streams ( ). Impurities (promoters) are often added to the feed Intentionally In order to selectively enhance a particular reaction channel (.9) as well as to Increase the catalyst s resistance to poisons. The selectivity and/or poison tolerance of a catalyst can often times be Improved by alloying with other metals (8,10). Although the effects of Impurities or of alloying are well recognized In catalyst formulation and utilization, little Is known about the fundamental mechanisms by which these surface modifications alter catalytic chemistry. [Pg.186]

A highly detailed picture of a reaction mechanism evolves in-situ studies. It is now known that the adsorption of molecules from the gas phase can seriously influence the reactivity of adsorbed species at oxide surfaces[24]. In-situ observation of adsorbed molecules on metal-oxide surfaces is a crucial issue in molecular-scale understanding of catalysis. The transport of adsorbed species often controls the rate of surface reactions. In practice the inherent compositional and structural inhomogeneity of oxide surfaces makes the problem of identifying the essential issues for their catalytic performance extremely difficult. In order to reduce the level of complexity, a common approach is to study model catalysts such as single crystal oxide surfaces and epitaxial oxide flat surfaces. [Pg.26]


See other pages where Reaction mechanism catalyst surface is mentioned: [Pg.25]    [Pg.180]    [Pg.181]    [Pg.25]    [Pg.174]    [Pg.548]    [Pg.791]    [Pg.182]    [Pg.42]    [Pg.342]    [Pg.508]    [Pg.1321]    [Pg.210]    [Pg.1045]    [Pg.180]    [Pg.391]    [Pg.420]    [Pg.22]    [Pg.1006]    [Pg.182]    [Pg.6]    [Pg.517]    [Pg.645]    [Pg.391]    [Pg.1]    [Pg.211]    [Pg.32]   
See also in sourсe #XX -- [ Pg.345 ]




SEARCH



Catalyst , reaction mechanism

Catalyst mechanism

Mechanisms surfaces

Surface catalysts

Surface mechanics

Surfaces Mechanical

© 2024 chempedia.info