Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction fluid catalytic cracking

In fluid catalytic cracking, a partially vaporized gas oil is contacted with zeoflte catalyst (see Fluidization). Contact time varies from 5 s—2 min pressure usually is in the range of 250—400 kPa (2.5—4 atm), depending on the design of the unit reaction temperatures are 720—850 K (see BuTYLENEs). [Pg.126]

Reduced Emissions and Waste Minimization. Reducing harmful emissions and minimizing wastes within a process by inclusion of additional reaction and separation steps and catalyst modification may be substantially better than end-of-pipe cleanup or even simply improving maintenance, housekeeping, and process control practices. SO2 and NO reduction to their elemental products in fluid catalytic cracking units exemplifies the use of such a strategy (11). [Pg.508]

Catalytic Pyrolysis. This should not be confused with fluid catalytic cracking, which is used in petroleum refining (see Catalysts, regeneration). Catalytic pyrolysis is aimed at producing primarily ethylene. There are many patents and research articles covering the last 20 years (84—89). Catalytic research until 1988 has been summarized (86). Almost all catalysts produce higher amounts of CO and CO2 than normally obtained with conventional pyrolysis. This indicates that the water gas reaction is also very active with these catalysts, and usually this leads to some deterioration of the olefin yield. Significant amounts of coke have been found in these catalysts, and thus there is a further reduction in olefin yield with on-stream time. Most of these catalysts are based on low surface area alumina catalysts (86). A notable exception is the catalyst developed in the former USSR (89). This catalyst primarily contains vanadium as the active material on pumice (89), and is claimed to produce low levels of carbon oxides. [Pg.443]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

The most important undesired metallic impurities are nickel and vanadium, present in porphyrinic structures that originate from plants and are predominantly found in the heavy residues. In addition, iron may be present due to corrosion in storage tanks. These metals deposit on catalysts and give rise to enhanced carbon deposition (nickel in particular). Vanadium has a deleterious effect on the lattice structure of zeolites used in fluid catalytic cracking. A host of other elements may also be present. Hydrodemetallization is strictly speaking not a catalytic process, because the metallic elements remain in the form of sulfides on the catalyst. Decomposition of the porphyrinic structures is a relatively rapid reaction and as a result it occurs mainly in the front end of the catalyst bed, and at the outside of the catalyst particles. [Pg.355]

Cerium oxides are outstanding oxide materials for catalytic purposes, and they are used in many catalytic applications, for example, for the oxidation of CO, the removal of SOx from fluid catalytic cracking flue gases, the water gas shift reaction, or in the oxidative coupling reaction of methane [155, 156]. Ceria is also widely used as an active component in the three-way catalyst for automotive exhaust pollution control,... [Pg.177]

MSCC [Millisecond catalytic cracking] A fluid catalytic cracking process which uses an ultra-short contact time reaction system. It is claimed that less capital investment and higher liquid yields can be achieved using this process, compared with conventional FCC units. Developed by Bar-Co and now offered by UOP it has been operating since 1994. [Pg.184]

A number of mechanistic modeling studies to explain the fluid catalytic cracking process and to predict the yields of valuable products of the FCC unit have been performed in the past. Weekman and Nace (1970) presented a reaction network model based on the assumption that the catalytic cracking kinetics are second order with respect to the feed concentration and on a three-lump scheme. The first lump corresponds to the entire charge stock above the gasoline boiling range, the second... [Pg.25]

The fluid catalytic cracking (FCC) is a very dynamic nnit that is typically the major conversion process in a refinery. Proper modeling and nnderstanding of unit capabilities represents a tremendons opportunity to improve the overall nnit operation and minimize unit emissions. The combustion chemistry in the FCC regenerator that produces environmental pollntants is extremely complex as nnmerons interactions and reactions occnr between the various chemical species. [Pg.272]

Figure 1731. Fluidized bed reactor processes for the conversion of petroleum fractions, (a) Exxon Model IV fluid catalytic cracking (FCC) unit sketch and operating parameters. (Hetsroni, Handbook of Multiphase Systems, McGraw-Hill, New York, 1982). (b) A modem FCC unit utilizing active zeolite catalysts the reaction occurs primarily in the riser which can be as high as 45 m. (c) Fluidized bed hydroformer in which straight chain molecules are converted into branched ones in the presence of hydrogen at a pressure of 1500 atm. The process has been largely superseded by fixed bed units employing precious metal catalysts (Hetsroni, loc. cit.). (d) A fluidized bed coking process units have been built with capacities of 400-12,000 tons/day. Figure 1731. Fluidized bed reactor processes for the conversion of petroleum fractions, (a) Exxon Model IV fluid catalytic cracking (FCC) unit sketch and operating parameters. (Hetsroni, Handbook of Multiphase Systems, McGraw-Hill, New York, 1982). (b) A modem FCC unit utilizing active zeolite catalysts the reaction occurs primarily in the riser which can be as high as 45 m. (c) Fluidized bed hydroformer in which straight chain molecules are converted into branched ones in the presence of hydrogen at a pressure of 1500 atm. The process has been largely superseded by fixed bed units employing precious metal catalysts (Hetsroni, loc. cit.). (d) A fluidized bed coking process units have been built with capacities of 400-12,000 tons/day.
In the process, a residuum is desulfurized and the nonvolatile fraction from the hydrodesulfurizer is charged to the residuum fluid catalytic cracking unit. The reaction system is an external vertical riser terminating in a closed cyclone system. Dispersion steam in amounts higher than that used for gas oils is used to assist in the vaporization of any volatile constituents of heavy feedstocks. [Pg.330]

Riser the part of the bubble-plate assembly which channels the vapor and causes it to flow downward to escape through the liquid also the vertical pipe where fluid catalytic cracking reactions occur. [Pg.451]

Riser pipe the pipe in a fluid catalytic cracking process (q.v.) where catalyst and feedstock arc lifted into the reactor the pipe in which most of the reaction takes place or is initiated. [Pg.451]


See other pages where Reaction fluid catalytic cracking is mentioned: [Pg.508]    [Pg.197]    [Pg.363]    [Pg.203]    [Pg.337]    [Pg.57]    [Pg.93]    [Pg.137]    [Pg.240]    [Pg.3]    [Pg.569]    [Pg.16]    [Pg.17]    [Pg.215]    [Pg.11]    [Pg.143]    [Pg.201]    [Pg.32]    [Pg.32]    [Pg.34]    [Pg.448]    [Pg.96]    [Pg.210]    [Pg.288]    [Pg.289]    [Pg.43]    [Pg.421]    [Pg.407]    [Pg.235]    [Pg.106]    [Pg.148]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Catalytic cracking reactions

Catalytic fluid

Cracking fluid

Cracking reactions

Fluid catalytic cracking

Fluid catalytic cracking reaction mechanism

Reactions fluids

© 2024 chempedia.info