Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate coefficients/constants

Ion-molecule rate constants, predicted by these theories, show a satisfactory agreement with the experimental ones, as illustrated in Table XII for a set of proton-transfer processes. Furthermore, the data in Table XII confirm the view that rate coefficients for reactions between a given ionic species and homologous substrates are expected to fall within the same order of magnitude. Similar rate-constant coefficients for reactions involving a given ionic species and molecules with comparable polarizability and dipole momentum can therefore be expected. [Pg.86]

We now make two coimections with topics discussed earlier. First, at the begiiming of this section we defined 1/Jj as the rate constant for population decay and 1/J2 as the rate constant for coherence decay. Equation (A1.6.63) shows that for spontaneous emission MT = y, while 1/J2 = y/2 comparing with equation (A1.6.60) we see that for spontaneous emission, 1/J2 = 0- Second, note that y is the rate constant for population transfer due to spontaneous emission it is identical to the Einstein A coefficient which we defined in equation (Al.6.3). [Pg.234]

The exponential fiinction of the matrix can be evaluated tln-ough the power series expansion of exp(). c is the coliinm vector whose elements are the concentrations c.. The matrix elements of the rate coefficient matrix K are the first-order rate constants W.. The system is called closed if all reactions and back reactions are included. Then K is of rank N- 1 with positive eigenvalues, of which exactly one is zero. It corresponds to the equilibrium state, witii concentrations r detennined by the principle of microscopic reversibility ... [Pg.790]

Predicting the solvent or density dependence of rate constants by equation (A3.6.29) or equation (A3.6.31) requires the same ingredients as the calculation of TST rate constants plus an estimate of and a suitable model for the friction coefficient y and its density dependence. While in the framework of molecular dynamics simulations it may be worthwhile to numerically calculate friction coefficients from the average of the relevant time correlation fiinctions, for practical purposes in the analysis of kinetic data it is much more convenient and instructive to use experimentally detemiined macroscopic solvent parameters. [Pg.849]

Multidimensionality may also manifest itself in the rate coefficient as a consequence of anisotropy of the friction coefficient [M]- Weak friction transverse to the minimum energy reaction path causes a significant reduction of the effective friction and leads to a much weaker dependence of the rate constant on solvent viscosity. These conclusions based on two-dimensional models also have been shown to hold for the general multidimensional case [M, 59, and 61]. [Pg.851]

Because of the general difficulty encountered in generating reliable potentials energy surfaces and estimating reasonable friction kernels, it still remains an open question whether by analysis of experimental rate constants one can decide whether non-Markovian bath effects or other influences cause a particular solvent or pressure dependence of reaction rate coefficients in condensed phase. From that point of view, a purely... [Pg.852]

Figure A3.6.5. Photoisomerization rate constant of (ran.s -stilbene m n-pentane versus inverse of the self-diflfrision coefficient. Points represent experimental data, the dashed curve is a model calculation based on an... Figure A3.6.5. Photoisomerization rate constant of (ran.s -stilbene m n-pentane versus inverse of the self-diflfrision coefficient. Points represent experimental data, the dashed curve is a model calculation based on an...
If all the resonance states which fomi a microcanonical ensemble have random i, and are thus intrinsically unassignable, a situation arises which is caWtA. statistical state-specific behaviour [95]. Since the wavefunction coefficients of the i / are Gaussian random variables when projected onto (]). basis fiinctions for any zero-order representation [96], the distribution of the state-specific rate constants will be as statistical as possible. If these within the energy interval E E+ AE fomi a conthuious distribution, Levine [97] has argued that the probability of a particular k is given by the Porter-Thomas [98] distribution... [Pg.1031]

Einstein derived the relationship between spontaneous emission rate and the absorption intensity or stimulated emission rate in 1917 using a thennodynamic argument [13]. Both absorption intensity and emission rate depend on the transition moment integral of equation (B 1.1.1). so that gives us a way to relate them. The symbol A is often used for the rate constant for emission it is sometimes called the Einstein A coefficient. For emission in the gas phase from a state to a lower state j we can write... [Pg.1131]

Perrin J, Leroy O and Bordage M C 1996 Cross-sections, rate constants and transport coefficients in silane chemistry Contr. Plasma Phys 36 3-49... [Pg.2812]

There is still some debate regarding the form of a dynamical equation for the time evolution of the density distribution in the 9 / 1 regime. Fortunately, to evaluate the rate constant in the transition state theory approximation, we need only know the form of the equilibrium distribution. It is only when we wish to obtain a more accurate estimate of the rate constant, including an estimate of the transmission coefficient, that we need to define the system s dynamics. [Pg.203]

The kinetic data are essentially always treated using the pseudophase model, regarding the micellar solution as consisting of two separate phases. The simplest case of micellar catalysis applies to unimolecTilar reactions where the catalytic effect depends on the efficiency of bindirg of the reactant to the micelle (quantified by the partition coefficient, P) and the rate constant of the reaction in the micellar pseudophase (k ) and in the aqueous phase (k ). Menger and Portnoy have developed a model, treating micelles as enzyme-like particles, that allows the evaluation of all three parameters from the dependence of the observed rate constant on the concentration of surfactant". ... [Pg.129]

The catalytic effect on unimolecular reactions can be attributed exclusively to the local medium effect. For more complicated bimolecular or higher-order reactions, the rate of the reaction is affected by an additional parameter the local concentration of the reacting species in or at the micelle. Also for higher-order reactions the pseudophase model is usually adopted (Figure 5.2). However, in these systems the dependence of the rate on the concentration of surfactant does not allow direct estimation of all of the rate constants and partition coefficients involved. Generally independent assessment of at least one of the partition coefficients is required before the other relevant parameters can be accessed. [Pg.129]

Herein Pa and Pb are the micelle - water partition coefficients of A and B, respectively, defined as ratios of the concentrations in the micellar and aqueous phase [S] is the concentration of surfactant V. ai,s is fhe molar volume of the micellised surfactant and k and k , are the second-order rate constants for the reaction in the micellar pseudophase and in the aqueous phase, respectively. The appearance of the molar volume of the surfactant in this equation is somewhat alarming. It is difficult to identify the volume of the micellar pseudophase that can be regarded as the potential reaction volume. Moreover, the reactants are often not homogeneously distributed throughout the micelle and... [Pg.130]

Herein [5.2]i is the total number of moles of 5.2 present in the reaction mixture, divided by the total reaction volume V is the observed pseudo-first-order rate constant Vmrji,s is an estimate of the molar volume of micellised surfactant S 1 and k , are the second-order rate constants in the aqueous phase and in the micellar pseudophase, respectively (see Figure 5.2) V is the volume of the aqueous phase and Psj is the partition coefficient of 5.2 over the micellar pseudophase and water, expressed as a ratio of concentrations. From the dependence of [5.2]j/lq,fe on the concentration of surfactant, Pj... [Pg.135]

Table 5.2. Analysis using the pseudophase model partition coefficients for 5.2 over CTAB or SDS micelles and water and second-order rate constants for the Diels-Alder reaction of 5.If and 5.1g with 5.2 in CTAB and SDS micelles at 25 C. Table 5.2. Analysis using the pseudophase model partition coefficients for 5.2 over CTAB or SDS micelles and water and second-order rate constants for the Diels-Alder reaction of 5.If and 5.1g with 5.2 in CTAB and SDS micelles at 25 C.
Table 5.2 shows that the partition coefficients of 5.2 over SDS or CTAB micelles and water are similar. Comparison of the rate constants in the micellar pseudophase calculated using the... [Pg.136]

Calculations usirig this value afford a partition coefficient for 5.2 of 96 and a micellar second-order rate constant of 0.21 M" s" . This partition coefficient is higher than the corresponding values for SDS micelles and CTAB micelles given in Table 5.2. This trend is in agreement with literature data, that indicate that Cu(DS)2 micelles are able to solubilize 1.5 times as much benzene as SDS micelles . Most likely this enhanced solubilisation is a result of the higher counterion binding of Cu(DS)2... [Pg.144]

Using Equation A3.4, the partition coefficient of 5.2 can be obtained from the slope of the plot of the apparent second-order rate constant versus the concentration of surfactant and the independently determined value of 1 . ... [Pg.158]

The activity coefficients in sulphuric acid of a series of aromatic compounds have been determined. The values for three nitro-com-pounds are given in fig. 2.2. The nitration of these three compounds over a wide range of acidity was also studied, and it was shown that if the rates of nitration were corrected for the decrease of the activity coefficients, the corrected rate constant, varied only slightly... [Pg.18]

The rate of a process is expressed by the derivative of a concentration (square brackets) with respect to time, d[ ]/dt. If the concentration of a reaction product is used, this quantity is positive if a reactant is used, it is negative and a minus sign must be included. Also, each derivative d[ ]/dt should be divided by the coefficient of that component in the chemical equation which describes the reaction so that a single rate is described, whichever component in the reaction is used to monitor it. A rate law describes the rate of a reaction as the product of a constant k, called the rate constant, and various concentrations, each raised to specific powers. The power of an individual concentration term in a rate law is called the order with respect to that component, and the sum of the exponents of all concentration terms gives the overall order of the reaction. Thus in the rate law Rate = k[X] [Y], the reaction is first order in X, second order in Y, and third order overall. [Pg.280]

Rate Equations with Concentration-Independent Mass Transfer Coefficients. Except for equimolar counterdiffusion, the mass transfer coefficients appHcable to the various situations apparently depend on concentration through thej/g and factors. Instead of the classical rate equations 4 and 5, containing variable mass transfer coefficients, the rate of mass transfer can be expressed in terms of the constant coefficients for equimolar counterdiffusion using the relationships... [Pg.22]

The rate law draws attention to the role of component concentrations. AH other influences are lumped into coefficients called reaction rate constants. The are not supposed to change as concentrations change during the course of the reaction. Although are referred to as rate constants, they change with temperature, solvent, and other reaction conditions, even if the form of the rate law remains the same. [Pg.508]

R is rate of reaction per unit area, a is interfacial area per unit volume, S is solubiHty of solute in continuous phase, D is diffusivity of solute, k is rate constant, kj is mass-transfer coefficient, is concentration of reactive species, and Z is stoichiometric coefficient. When Dk is considerably greater (10 times) than Ra = aS Dk. [Pg.430]

For weU-defined reaction zones and irreversible, first-order reactions, the relative reaction and transport rates are expressed as the Hatta number, Ha (16). Ha equals (k- / l ) where k- = reaction rate constant, = molecular diffusivity of reactant, and k- = mass-transfer coefficient. Reaction... [Pg.509]

In the former case, the rate is independent of the diffusion coefficient and is determined by the intrinsic chemical kinetics in the latter case, the rate is independent of the rate constant k and depends on the diffusion coefficient the reaction is then diffusion controlled. This is a different kind of mass transport influence than that characteristic of a reactant from a gas to ahquid phase. [Pg.162]

As a reactant molecule from the fluid phase surrounding the particle enters the pore stmcture, it can either react on the surface or continue diffusing toward the center of the particle. A quantitative model of the process is developed by writing a differential equation for the conservation of mass of the reactant diffusing into the particle. At steady state, the rate of diffusion of the reactant into a shell of infinitesimal thickness minus the rate of diffusion out of the shell is equal to the rate of consumption of the reactant in the shell by chemical reaction. Solving the equation leads to a result that shows how the rate of the catalytic reaction is influenced by the interplay of the transport, which is characterized by the effective diffusion coefficient of the reactant in the pores, and the reaction, which is characterized by the first-order reaction rate constant. [Pg.171]

Figure 10 shows that Tj is a unique function of the Thiele modulus. When the modulus ( ) is small (- SdSl), the effectiveness factor is unity, which means that there is no effect of mass transport on the rate of the catalytic reaction. When ( ) is greater than about 1, the effectiveness factor is less than unity and the reaction rate is influenced by mass transport in the pores. When the modulus is large (- 10), the effectiveness factor is inversely proportional to the modulus, and the reaction rate (eq. 19) is proportional to k ( ), which, from the definition of ( ), implies that the rate and the observed reaction rate constant are proportional to (1 /R)(f9This result shows that both the rate constant, ie, a measure of the intrinsic activity of the catalyst, and the effective diffusion coefficient, ie, a measure of the resistance to transport of the reactant offered by the pore stmcture, influence the rate. It is not appropriate to say that the reaction is diffusion controlled it depends on both the diffusion and the chemical kinetics. In contrast, as shown by equation 3, a reaction in solution can be diffusion controlled, depending on D but not on k. [Pg.172]

Generalized charts are appHcable to a wide range of industrially important chemicals. Properties for which charts are available include all thermodynamic properties, eg, enthalpy, entropy, Gibbs energy and PVT data, compressibiUty factors, Hquid densities, fugacity coefficients, surface tensions, diffusivities, transport properties, and rate constants for chemical reactions. Charts and tables of compressibiHty factors vs reduced pressure and reduced temperature have been produced. Data is available in both tabular and graphical form (61—72). [Pg.239]

The number of independent rate equations is the same as the number of independent stoichiometric relations. In the present example. Reactions (1) and (2) are reversible reactions and are not independent. Accordingly, C,. and C, for example, can be eliminated from the equations for and which then become an integrable system. Usually only systems of linear differential equations with constant coefficients are solvable analytically. [Pg.684]


See other pages where Rate coefficients/constants is mentioned: [Pg.9]    [Pg.20]    [Pg.9]    [Pg.20]    [Pg.762]    [Pg.850]    [Pg.850]    [Pg.890]    [Pg.1031]    [Pg.1923]    [Pg.2005]    [Pg.489]    [Pg.67]    [Pg.136]    [Pg.136]    [Pg.142]    [Pg.144]    [Pg.153]    [Pg.508]    [Pg.405]    [Pg.172]    [Pg.254]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Constant coefficients

Rate coefficient

Rate coefficients and constants

Rate coefficients and equilibrium constant

Reaction rate constant and regression coefficient

© 2024 chempedia.info