Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rare earths Detection

Spark, flame and plasma excitation are applicable to the direct excitation of solution samples. Osumi et al. (1970) used spark excitation to a rotating disc electrode to obtain rare earth detection limits of 2 to 40 ppm in complex-spectra rare earth elements. They used a controlled atmosphere and the rare earth solution contained 60% methanol. The introduction of solutions into spark discharges via porous graphite electrode (Fadeeva and Karpenko, 1972) or as aerosols (Karpenko et al., 1974) has also provided satisfactory analyses. [Pg.412]

Following the movement of airborne pollutants requires a natural or artificial tracer (a species specific to the source of the airborne pollutants) that can be experimentally measured at sites distant from the source. Limitations placed on the tracer, therefore, governed the design of the experimental procedure. These limitations included cost, the need to detect small quantities of the tracer, and the absence of the tracer from other natural sources. In addition, aerosols are emitted from high-temperature combustion sources that produce an abundance of very reactive species. The tracer, therefore, had to be both thermally and chemically stable. On the basis of these criteria, rare earth isotopes, such as those of Nd, were selected as tracers. The choice of tracer, in turn, dictated the analytical method (thermal ionization mass spectrometry, or TIMS) for measuring the isotopic abundances of... [Pg.7]

Inductively coupled plasma-mass spectrometry (ICP-MS) is a multielement analytical method with detection limits which are, for many trace elements, including the rare earth elements, better than those of most conventional techniques. With increasing availability of ICP-MS instalments in geological laboratories this method has been established as the most prominent technique for the determination of a large number of minor and trace elements in geological samples. [Pg.454]

He is a recognized expert in solid state and materials chemistry and environmental chemistry. He has active programs in solid state f-element chemistry and nanomaterials science. His current research interests include heavy metal detection and remediation in aqueous environments, ferroelectric nanomaterials, actinide and rare-earth metal sohd slate chemistry, and nuclear non-proliferation. He currently maintains a collaboration in nuclear materials with Los Alamos National Laboratory and a collaboration in peaceful materials science development with the Russian Federal Nuclear Center - VNIIEF, Sarov, Russia, U.S. State Department projects. He has published over 100 peer-reviewed journal articles, book chapters, and reviews, while presenting over 130 international and national invited lectures on his area of chemistry. Dr. Dorhout currently serves as Vice Provost for Graduate Studies and Assistant Vice President for research. He has also served as the Interim Executive Director for the Office of International Programs and as Associate Dean for Research and Graduate Education for the College of Natural Sciences at Colorado State University. [Pg.359]

Tracer materials are defined as any product included in the test substance that can be recovered analytically for determining the drift from the application. This may be the active ingredient in an actual tank mix, or it may be a material added to the tank mix for subsequent detection. The selection of an appropriate tracer for assessing deposition rates in the field is critical to the success of a field study. Tracer materials such as low-level active ingredient products, colored dyes, fluorescent dyes, metallic salts, rare earth elements and radioactive isotopes have been used with varying degrees of success in the field. An appropriate tracer should have the following characteristics ... [Pg.976]

Foret, F., Fanali, S., Nardi, A., and Bocek, P., Capillary zone electrophoresis of rare earth metals with indirect UV absorbance detection, Electrophoresis, 11, 780, 1990. [Pg.422]

Transition metal oxides, rare earth oxides and various metal complexes deposited on their surface are typical phases of DeNO catalysts that lead to redox properties. For each of these phases, complementary tools exist for a proper characterization of the metal coordination number, oxidation state or nuclearity. Among all the techniques such as EPR [80], UV-vis [81] and IR, Raman, transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS) and NMR, recently reviewed [82] for their application in the study of supported molecular metal complexes, Raman and IR spectroscopies are the only ones we will focus on. The major advantages offered by these spectroscopic techniques are that (1) they can detect XRD inactive amorphous surface metal oxide phases as well as crystalline nanophases and (2) they are able to collect information under various environmental conditions [83], We will describe their contributions to the study of both the support (oxide) and the deposited phase (metal complex). [Pg.112]

IR spectrometers have the same components as UY/visible, except the materials need to be specially selected for their transmission properties in the IR (e.g., NaCl prisms for the monochromators). The radiation source is simply an inert substance heated to about 1500 °C (e.g., the Nernst glower, which uses a cylinder composed of rare earth oxides). Detection is usually by a thermal detector, such as a simple thermocouple, or some similar device. Two-beam system instruments often work on the null principle, in which the power of the reference beam is mechanically attenuated by the gradual insertion of a wedge-shaped absorber inserted into the beam, until it matches the power in the sample beam. In a simple ( flatbed ) system with a chart recorder, the movement of the mechanical attenuator is directly linked to the chart recorder. The output spectrum is essentially a record of the degree of... [Pg.79]

Some rare-earth-activated materials do show strong fluorescence phenomena at temperatures even up to IOOO°C with a lifetime long enough to be detected without particular difficulties, as demonstrated in the cases of neodymium yttrium-aluminum-garnet(Nd YAG) andScPC>4 Eu3+ by Grattan etal.m and Bugos etal.,m respectively. [Pg.366]

The discovery of the rare earth elements provide a long history of almost two hundred years of trial and error in the claims of element discovery starting before the time of Dalton s theory of the atom and determination of atomic weight values, Mendeleev s periodic table, the advent of optical spectroscopy, Bohr s theory of the electronic structure of atoms and Moseley s x-ray detection method for atomic number determination. The fact that the similarity in the chemical properties of the rare earth elements make them especially difficult to chemically isolate led to a situation where many mixtures of elements were being mistaken for elemental species. As a result, atomic weight values were not nearly as useful because the lack of separation meant that additional elements would still be present within an oxide and lead to inaccurate atomic weight values. Very pure rare earth samples did not become a reality until the mid twentieth century. [Pg.3]

Optical Detection of the Lanthanoid Ion Contraction by Internal Charge-Transfer Absorption of Rare Earth Bisporphyrinate Double-deckers... [Pg.94]

The first isotope of this element having mass number 253 and half-life 20 days was detected in 1952 in the Pacific in debris from the first thermonuclear explosion. The isotope was an alpha emitter of 6.6 MeV energy, chemically analogous to the rare earth element holmium. Isotope 246, having a half-life 7.3 minutes, was synthesized in the Lawrence Berkeley Laboratory cyclotron in 1954. The element was named Einsteinium in honor of Albert Einstein. Only microgram amounts have been synthesized. The element has high specific alpha activities. It may be used as a tracer in chemical studies. Commercial applications are few. [Pg.292]

Promethium does not occur in metallic form in nature. Minute quantities are associated with other rare earths. It also is detected in uranium fission products. It is probably the rarest of the lanthanide elements. [Pg.780]

Terbium occurs in nature associated with other rare earths. It is found in minerals xenotime, a rare earth phosphate consisting of 1% terbia and in euxenite, a complex oxide containing about 1.3% terbia. It also is found in cerite, monazite, and gadolinite. Also, the element has been detected in stellar matter. Abundance of terbium in the earth s crust is estimated to be 1.2 mg/kg. [Pg.920]

The element was discovered in 1794 by the Swedish chemist Gadolin. He named it after the small town Ytterby in Sweden where the mineral containing yttria was found. Mosander in 1843 determined that the yttria consisted of three oxides yttria, erbia, and terbia. Yttrium occurs in all rare earths. It is recovered commercially from monazite sand, which contains about 3% yttrium. It also is found in bastnasite in smaller amounts of about 0.2%. Abundance of yttrium in earth s crust is estimated to be 33 mg/kg. The metal has been detected in moon rocks. [Pg.977]

For comparison, steady-state cathodoluminescence spectra (Fig. 4.7) are presented from two scheelite samples with different rare-earth elements concentrations (Table 4.5). It is clearly seen that only broadband emissions are detected, while the narrow Unes of several rare-earth elements, mostly Sm + are extremely weak. [Pg.56]

Approximately 50 natural zircons have been investigated together with synthesized analogs, as nominally pure and activated by potential liuninogens. Concentrations of potential impurities in several zircxon samples are presented in Tables 4.14-4.15 The laser-induced time-resolved technique enables us to detect the following emission centers radiation induced trivalent rare-earth elements such as Gd ", Ce ", Tb ", Tm ", Er +, Ho ", Dy ", Eu ", Sm ", Yb + and Nd + (U02) Fe + and Cr + (Figs. 4.38-4.40). [Pg.86]

The natural garnet in our study consisted of ten samples with different colors. The laser-induced time-resolved technique enables us to detect trivalent rare-earth elements, Mn " and possibly Mn emission centers (Figs. 4.56-4.57). [Pg.102]

The monazite structure consists of distorted PO4 tetrahedra with each metal atom roughly equidistant from nine oxygen atoms. Minor amounts of other rare-earth elements may occur. Steady-state liuninescence under X-ray excitation of monazite revealed emission of Gd, Tb, Dy and Sm (Gorobets and Rogojine 2001). Laser-induced time-resolved liuninescence enables us to detect Sm +, Eu and Nd emission centers (Fig. 4.70). [Pg.115]


See other pages where Rare earths Detection is mentioned: [Pg.330]    [Pg.330]    [Pg.1547]    [Pg.203]    [Pg.207]    [Pg.288]    [Pg.292]    [Pg.101]    [Pg.30]    [Pg.288]    [Pg.305]    [Pg.353]    [Pg.359]    [Pg.16]    [Pg.19]    [Pg.455]    [Pg.6]    [Pg.106]    [Pg.20]    [Pg.349]    [Pg.286]    [Pg.138]    [Pg.90]    [Pg.51]    [Pg.55]    [Pg.56]    [Pg.58]    [Pg.61]    [Pg.90]    [Pg.139]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



© 2024 chempedia.info