Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Random copolymers properties

Random copolymers tend to average the properties of the constituent monomers in proportion to the relative abundance of the two comonomers. [Pg.434]

Hexafluoiopiopylene and tetiafluoioethylene aie copolymerized, with trichloiacetyl peroxide as the catalyst, at low temperature (43). Newer catalytic methods, including irradiation, achieve copolymerization at different temperatures (44,45). Aqueous and nonaqueous dispersion polymerizations appear to be the most convenient routes to commercial production (1,46—50). The polymerization conditions are similar to those of TFE homopolymer dispersion polymerization. The copolymer of HFP—TFE is a random copolymer that is, HFP units add to the growing chains at random intervals. The optimal composition of the copolymer requires that the mechanical properties are retained in the usable range and that the melt viscosity is low enough for easy melt processing. [Pg.359]

Random insertion of ethylene as comonomer and, in some cases, butene as termonomer, enhances clarity and depresses the polymer melting point and stiffness. Propylene—butene copolymers are also available (47). Consequendy, these polymers are used in apphcations where clarity is essential and as a sealant layer in polypropylene films. The impact resistance of these polymers is sligbdy superior to propylene homopolymers, especially at refrigeration temperatures, but still vastiy inferior to that of heterophasic copolymers. Properties of these polymers are shown in Table 4. [Pg.410]

In order to achieve the desired fiber properties, the two monomers were copolymerized so the final product was a block copolymer of the ABA type, where A was pure polyglycoHde and B, a random copolymer of mostly poly (trimethylene carbonate). The selected composition was about 30—40% poly (trimethylene carbonate). This suture reportedly has exceUent flexibiHty and superior in vivo tensile strength retention compared to polyglycoHde. It has been absorbed without adverse reaction ia about seven months (43). MetaboHsm studies show that the route of excretion for the trimethylene carbonate moiety is somewhat different from the glycolate moiety. Most of the glycolate is excreted by urine whereas most of the carbonate is excreted by expired CO2 and uriae. [Pg.191]

Vinyl Acetate—Ethylene Copolymers. In these random copolymers, the ratio of ethylene to vinyl acetate (EVA) is varied from 30—60%. As the vinyl acetate content increases, the oil and heat resistance increases. With higher ethylene content the physical strength, tensile, and tear increases. The polymers are cured with peroxide. The main properties of these elastomers include heat resistance, moderate oil and solvent resistance, low compression set, good weather resistance, high damping, exceUent o2one resistance, and they can be easily colored (see Vinyl polymers, poly(VINYL acetate)). [Pg.234]

Whereas random copolymers exhibit one T described by equation 38, block copolymers, because of this microphase separation, exhibit two glass-transition temperatures. The T of each block is close to, if not the same as, the homopolymer from which it was formed. Polymer properties are also affected by the arrangement of the blocks. This is shown for high styrene-containing or high molecular-weight styrene resias of various block arrangements ia Table 3. [Pg.184]

Poly(butadiene- (9-acrylonitrile) [9008-18-3] NBR (64), is another commercially significant random copolymer. This mbber is manufactured by free-radical emulsion polymerization. Important producers include Copolymer Rubber and Chemical (Nysyn), B. F. Goodrich (Hycar), Goodyear (Chemigum), and Uninoyal (Paracdl). The total U.S. production of nitrile mbber (NBR) in 1990 was 95.6 t (65). The most important property of NBR mbber is its oil resistance. It is used in oil well parts, fuels, oil, and solvents (64) (see Elastomers, synthetic— nitrile rubber). [Pg.184]

Random copolymers of vinyl chloride and other monomers are important commercially. Most of these materials are produced by suspension or emulsion polymerization using free-radical initiators. Important producers for vinyl chloride—vinyUdene chloride copolymers include Borden, Inc. and Dow. These copolymers are used in specialized coatings appHcations because of their enhanced solubiUty and as extender resins in plastisols where rapid fusion is required (72). Another important class of materials are the vinyl chloride—vinyl acetate copolymers. Principal producers include Borden Chemicals Plastics, B. F. Goodrich Chemical, and Union Carbide. The copolymerization of vinyl chloride with vinyl acetate yields a material with improved processabihty compared with vinyl chloride homopolymer. However, the physical and chemical properties of the copolymers are different from those of the homopolymer PVC. Generally, as the vinyl acetate content increases, the resin solubiUty in ketone and ester solvents and its susceptibiUty to chemical attack increase, the resin viscosity and heat distortion temperature decrease, and the tensile strength and flexibiUty increase slightly. [Pg.185]

Two random copolymers of this type are of importance, ethylene-propylene copolymers and ethylene-but-l-ene copolymers. The use and properties of polypropylene containing a small quantity of ethylene in stereoblocks within the molecule has already been discussed. Although referred to commercially as ethylene-propylene copolymers these materials are essentially slightly modified polypropylene. The random ethylene-propylene polymers are rubbery and are discussed further in Section 11.9. [Pg.275]

Metallocene catalysts produce random copolymers [29-31] with different property profiles (Table 14). These data show that random copolymers have higher stiffness and higher transparency at certain melting point levels. A very low content of extractables in low-melting... [Pg.162]

Random copolymers made by copolymerizing equal amounts of ethylene and propylene are highly amorphous, and they have rubbery properties. [Pg.330]

Currently, more SBR is produced by copolymerizing the two monomers with anionic or coordination catalysts. The formed copolymer has better mechanical properties and a narrower molecular weight distribution. A random copolymer with ordered sequence can also be made in solution using butyllithium, provided that the two monomers are charged slowly. Block copolymers of butadiene and styrene may be produced in solution using coordination or anionic catalysts. Butadiene polymerizes first until it is consumed, then styrene starts to polymerize. SBR produced by coordinaton catalysts has better tensile strength than that produced by free radical initiators. [Pg.353]

Additional chemical stability can be given to PPVs by substitution at the vinyl-ene carbons. Thus, CN-PPV and PPV-DP are more stable than their parent polymers [173]. Carter et al. [172] showed that a random copolymer of PPV containing non-conjugated segments is considerably more stable to photooxidation than the fully conjugated polymer. Of course, the electrical and optical properties are also altered by these substitutions. [Pg.236]

Random copolymers of acrylonitrile and styrene containing less than 30% AN have been well known (11), and many varieties have been sold commercially. The generic material known as SAN, which is a copolymer of 25% AN and 75% styrene, has been sold for many years but has not been used in food or beverage packaging because of its relatively poor barrier and organoleptic properties. There was little or no interest in... [Pg.69]

Because of the great differences in the properties between vinyl polymers and heterochain polymers, copolymerization of a vinyl monomer and a cyclic monomer seems very intersting. Yet, little success has been achieved in the formation of random copolymers because the reactivities are very different between vinyl monomers and cyclic monomers. However, recent progress in the field of organic chemistry has suggested many possibilities especially for the activation of monomers and for the modification of the reactivity of the propagating species. The probability of successful synthesis of random copolymers has thus greatly increased. [Pg.37]

Random copolymers usually exhibit properties which are intermediate between those of the specihc homopolymers. The fact that graft copolymers contain long sequences of two different monomer units indicates that it should be possible to select polymer combinations to give highly specihc properties which are characteristics of the homopolymers involved. [Pg.867]

The theories of Miller and Macosko are used to derive expressions for pre-gel and post-gel properties of a crosslinking mixture when two crosslinking reactions occur. The mixture consists of a polymer and a crosslinker, each with reactive functional groups. Both the polymer and crosslinker can be either collections of oligomeric species or random copolymers with arbitrary ratios of M /Mj. The two independent crosslinking reactions are the condensation of a functional group on the polymer with one on the crosslinker, and the self-condensation of functional groups on the crosslinker. [Pg.190]

The use of this analytical expression greatly simplifies the calculation of network properties for random copolymers. [Pg.196]

This multitude of properties the polymer must possess dictate that better polymer performance will be obtained from materials with complicated structures. Such polymers are complex polymers l) random copolymers, 2) block copolymers, 3) graft copolymers, 4) micellizing copolymers, and 5) network copolymers. There has been a dramatic increase in the past decade in the number and complexity of these copolymers and a sizable number of these new products have been made from natural products. The synthesis, analysis, and testing of lignin and starch, natural product copolymers, with particular emphasis on graft copolymers designed for enhanced oil recovery, will be presented. [Pg.181]

Acrylic Polymerization Model. Acrylic polymers are known to have excellent weathering and functional properties as binders for coatings, and they are widely used in the coatings as well as many other industries. To obtain the desirable property/cost balance, random copolymers instead of blends of homopolymers are frequently used. [Pg.171]

When the USA and Germany were cut off from the supplies of natural rubber during the Second World War both countries sought to produce a synthetic alternative SBR was the result, and at one stage it was the most commonly used synthetic rubber. It can be produced by both emulsion and solution polymerisation techniques, with the emulsion grades being the most widely used. Emulsion polymerisation yields a random copolymer, but the temperature of the polymerisation reaction also controls the resultant properties obtained. Cold polymerisation yields polymers with superior properties to the hot polymerised types. [Pg.96]


See other pages where Random copolymers properties is mentioned: [Pg.408]    [Pg.410]    [Pg.421]    [Pg.238]    [Pg.415]    [Pg.477]    [Pg.183]    [Pg.183]    [Pg.184]    [Pg.299]    [Pg.554]    [Pg.713]    [Pg.162]    [Pg.501]    [Pg.591]    [Pg.130]    [Pg.47]    [Pg.449]    [Pg.166]    [Pg.233]    [Pg.197]    [Pg.86]    [Pg.108]    [Pg.166]    [Pg.54]    [Pg.110]    [Pg.122]    [Pg.135]    [Pg.173]    [Pg.182]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Random copolymer

© 2024 chempedia.info