Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactive materials characteristics

Approximately 25—30% of a reactor s fuel is removed and replaced during plaimed refueling outages, which normally occur every 12 to 18 months. Spent fuel is highly radioactive because it contains by-products from nuclear fission created during reactor operation. A characteristic of these radioactive materials is that they gradually decay, losing their radioactive properties at a set rate. Each radioactive component has a different rate of decay known as its half-life, which is the time it takes for a material to lose half of its radioactivity. The radioactive components in spent nuclear fuel include cobalt-60 (5-yr half-Hfe), cesium-137 (30-yr half-Hfe), and plutonium-239 (24,400-yr half-Hfe). [Pg.92]

Tracers have been used to label fluids in order to track fluid movement and monitor chemical changes of the injected fluid. Radioactive materials are one class of commonly used tracers. These tracers have several drawbacks. One drawback is that they require special handling because of the danger posed to personnel and the environment. Another drawback is the alteration by the radioactive materials of the natural isotope ratio indigenous to the reservoir— thereby interfering with scientific analysis of the reservoir fluid characteristics. In addition, the half life of radioactive tracers tends to be either too long or too short for practical use. [Pg.227]

For many of the analytical techniques discussed below, it is necessary to have a source of X-rays. There are three ways in which X-rays can be produced in an X-ray tube, by using a radioactive source, or by the use of synchrotron radiation (see Section 12.6). Radioactive sources consist of a radioactive element or compound which spontaneously produces X-rays of fixed energy, depending on the decay process characteristic of the radioactive material (see Section 10.3). Nuclear processes such as electron capture can result in X-ray (or y ray) emission. Thus many radioactive isotopes produce electromagnetic radiation in the X-ray region of the spectrum, for example 3He, 241Am, and 57Co. These sources tend to produce pure X-ray spectra (without the continuous radiation), but are of low intensity. They can be used as a source in portable X-ray devices, but can be hazardous to handle because they cannot be switched off. In contrast, synchrotron radiation provides an... [Pg.99]

Radioactivity Property or characteristic of radioactive material to spontaneously disintegrate with the emission of energy in the form of radiation measured in curies or becquerel. [Pg.24]

Radioactivity results when some part of an atom is unstable. The instability exists because the orbital electrons or the nucleus contain too much energy. Radioactive atoms are called radionuclides. They release excess energy by emitting radiation. The type of radiation released (alpha, beta, or gamma particles) may be more or less hazardous to humans, depending on the location of the radioactive materials. Exposure to radioactive materials outside the body poses external hazards. Radioactive materials may also be hazardous when ingested, inhaled, or injected and thus pose internal hazards. The sections below describe the characteristics of radiation particles as external or internal hazards and as they may be encountered after a terrorist attack. Chapter 3 provides additional details and addresses health effects associated with exposure to radiation. [Pg.61]

The beneficial use of radiation is one of the best examples of how careful characterization of the hazard is essential for its safe use. A radioactive substance can be safely stored or transported if appropriately contained. Depending on the characteristics of the radioactive material, it can be safely handled by using appropriate shielding and safety precautions. Laboratory workers usually wear special badges that quantify radiation exposure to ensure that predetermined levels of exposure, which are considered safe, are not exceeded. Unfortunately, after more than 50 years, society has not yet been able to design and implement a safe way to dispose of radioactive waste. The hazardous properties of radiation are explored further in a subsequent chapter. [Pg.24]

When thorium emits alpha particles, it disintegrates into other daughter radionuclides (radioactive materials), such as radium-226 and radon-222 (from thorium-230 in the uranium-238 decay series) or radium-228 and thoron (radon-220 from thorium-232 in the thorium decay series). It eventually decays to stable lead-208 or -206, which is not radioactive. More information about the decay of thorium can be found in Chapter 3. The toxicological characteristics of radon, radium, and lead are the subject of separate ATSDR Toxicological profiles. [Pg.27]

Hazardous chemical waste is defined in RCRA regulations as a solid waste that exhibits the characteristic of ignitability, corrosivity, reactivity, or toxicity, or is a specifically listed waste. The definition of hazardous waste specifically excludes radioactive material (source, special nuclear, or byproduct material) defined in AEA. [Pg.241]

Loss of radioactive material from the skin surface has been used to estimate in vivo percutaneous absorption. The difference in applied dose and residue on the skin is assumed to be absorbed. The characteristics of the radioisotope, penetrant, and vehicle may limit the usefulness of this procedure. Volatile materials may leave the surface without penetrating, and it is difficult to recover all material from the skin surface. In addition, skin may retain a reservoir of the penetrant that has not entered the circulation. [Pg.366]

Radiation from radioactive nuclides is used to detect changes in density or other characteristics of materials, to promote chemical, physical, or biological changes, and to provide a source of thermal energy. Some radioactive materials find use in industry, research, and medicine as tracers for physical, chemical, and biological processes.58... [Pg.990]

The Bq is a minute measure of radioactivity and any sizeable amount of radioactive material will contain very many atoms and thus emit considerable amounts (TBq or GBq) of radiation. Another popular unit of decay is the curie, a non-Sl unit (historically calculated from the disintegrations of radium) which is equivalent to 37 x 10 Bq. Importantly, radioactivity decays exponentially, where a population of atoms in a sample will have a characteristic half-life (fi/2). The half-life is the key parameter when considering radioactivity and associated safety of radioisotopes, where fi/2 represents the time taken for the radioactivity to fall to a half the recorded level, as illustrated in Figure 10.4. Half-lives and associated properties of common radioactive isotopes are given in Table 10.2. [Pg.209]

As shown in Figure 11, each of the three neutrons emitted by the fission of one nucleus can cause the fission of another uranium-235 nucleus. Again, more neutrons are emitted. These reactions continue one after another as long as enough uranium-235 remains. This process is called a chain reaction. One characteristic of a chain reaction is that the particle that starts the reaction, in this case a neutron, is also produced from the reaction. A minimum quantity of radioactive material, called critical mass, is needed to keep a chain reaction going. [Pg.672]

The explosion of the nuclear reactor at Chernobyl (spelling changed recently to Chornobyl) in the Ukraine on April 26, 1986 sent radioactive material as far away as Sweden.90 The current death toll is 45. There has been a huge increase in childhood thyroid cancer, with cases as far as 500 km away 91 (U. S. bomb tests have also increased the incidence of thyroid cancers in the western United States.92) There is a 30-km exclusion zone around the plant where no one is allowed to live. This was created by the evacuation of 135,000 people 93 The accident is said to have happened because of combination of the physical characteristics of the reactor, the design of the control rods, human error and management shortcomings in the design, and implementation of the safety experiment. ... [Pg.7]

Describe the characteristics of radioactive materials that relate to radiation exposure and safety. [Pg.268]

In 1898, in Cambridge, England, a New Zealander, Ernest Rutherford, demonstrated that there were at least two different types of radiation with different penetrating power. He called these alpha and beta radiation. He subsequentiy worked at McGill University in Montreal, Canada, and found more radioactive elements different types of radium and thorium, and actinium. He proposed that these were links in chains of radioactive materials, called the transformation theory. Rutherford and his colleague, Frederic Soddy, described that the rate of decay of radioactive elements were characteristic of the element, and came to be known as half-life. Decay follows the law of probability. Over a given period of time, each atom has a certain probability of decaying, a process that results from the random movements of the subatomic components of the radioactive atoms. This was the first instance in physics of a truly unpredictable phenomenon. The decay of a radioactive atom was probabilistic. [Pg.66]

Not all of the 300 naturally occurring isotopes are stable. Unstable nuclei (protons and neutrons) spontaneously transform (decay) to achieve stability and are the radioactive materials syn. radionuclides or radioisotopes. Many other radioactive isotopes are made artificially by bombarding atoms with neutrons or charged particles in processes that occur in nuclear energy reactors and particle accelerators. As nuclei decay, they emit one of four types of radiation characteristic of the atom ... [Pg.201]

Radioactive materials are grouped according to their form and/or characteristics. These include Special Form Low Specific Activity (LSA) Surface Contaminated Object (SCO) Fissile Other Form. A radioactive material may meet the definition of one or more of the above. lATA 10.3.3... [Pg.210]


See other pages where Radioactive materials characteristics is mentioned: [Pg.242]    [Pg.321]    [Pg.356]    [Pg.662]    [Pg.283]    [Pg.1702]    [Pg.1748]    [Pg.559]    [Pg.22]    [Pg.603]    [Pg.129]    [Pg.221]    [Pg.212]    [Pg.189]    [Pg.453]    [Pg.207]    [Pg.101]    [Pg.559]    [Pg.405]    [Pg.633]    [Pg.3082]    [Pg.16]    [Pg.130]    [Pg.235]    [Pg.486]    [Pg.190]    [Pg.364]    [Pg.345]    [Pg.231]    [Pg.712]   
See also in sourсe #XX -- [ Pg.3 , Pg.471 ]




SEARCH



Characteristics material

Radioactive materials

© 2024 chempedia.info